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ABSTRACT

We present a novel regression framework centered on a coherent and averse mea-

sure of risk, the superquantile risk (also called conditional value-at-risk), which yields

more conservatively fitted curves than classical least squares and quantile regressions.

In contrast to other generalized regression techniques that approximate conditional

superquantiles by various combinations of conditional quantiles, we directly and in

perfect analog to classical regression obtain superquantile regression functions as op-

timal solutions of certain error minimization problems. We show the existence and

possible uniqueness of regression functions, discuss the stability of regression func-

tions under perturbations and approximation of the underlying data, and propose an

extension of the coefficient of determination R-squared and Cook’s distance for as-

sessing the goodness of fit for both quantile and superquantile regression models. We

present two classes of computational methods for solving the superquantile regression

problem, compare both methods’ complexity, and illustrate the methodology in eight

numerical examples in the areas of military applications, concerning mission employ-

ment of U.S. Navy helicopter pilots and Portuguese Navy submariners, reliability

engineering, uncertainty quantification, and financial risk management.
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EXECUTIVE SUMMARY

Analysts are often concerned with upper-tail realizations of random variables de-

scribing loss, cost, damage of a system and attempt to approximate such loss random

variables in terms of explanatory random variables that are more accessible in some

sense. We develop a novel regression framework that naturally extends least squares

and quantile regressions to contexts where an analyst seeks to assess regression errors

not by squaring them, as in the case of least squares regression, or by looking at their

signs, as in the case of quantile regression, but by weighing larger errors increasingly

heavily in a way consistent with a coherent and averse risk measure, the superquantile

risk measure (also called conditional value-at-risk).

In contrast to other generalized regression techniques that approximate condi-

tional superquantiles by various combinations of conditional quantiles, this framework

for superquantile regression is the first attempt to use superquantiles directly in a re-

gression model. The only assumption we require is that the involved random variables

have finite second moment. We rely on the superquantile-based risk quadrangle and

use the corresponding relations between measures of deviation, risk, and error applied

to the superquantile as the statistic to obtain superquantile regression functions as

optimal solutions of an error minimization problem. We develop the fundamental

theory for superquantile regression and build an alternative problem, the deviation-

based superquantile regression problem, which determines the regression coefficients

by minimizing a measure of deviation as opposed to a measure of error, leading to

computational advantages in problem size and simplification of the objective function.

We examine existence and uniqueness of the obtained regression functions as well as

consistency and stability of the regression functions under perturbations due to pos-

sible measurement errors and from approximating empirical distributions generated

by samples of the underlying data. We develop rate of convergence results under mild

assumptions.

xv



In this dissertation, we construct a model validation technique by extending

the concept of coefficient of determination used in least squares regression to both

quantile and superquantile regression. We show that these coefficients of determina-

tion are bounded between 0 and 1, with values near 1 preferred, and we also demon-

strate that the superquantile regression problem in fact maximizes the coefficient of

determination when it aims to minimize the error of the loss random variable by wisely

selecting the regression coefficients. Since adding explanatory random variables pos-

sibly increases the coefficient of determination, we define an adjusted coefficient of

determination for quantile and superquantile regression. Another validation analy-

sis tool that we develope is the concept of Cook’s distance applied to quantile and

superquantile regression.

We present two classes of computational methods for solving superquantile

regression problems. The first computational method is denoted primal method,

where we minimize the superquantile deviation measure using analytical integration

or numerical integration schemes. The second computational method is based on the

dualization of risk. We build a new superquantile regression problem by using the

expression of risk and deviation. We compare the complexity of the methods and

demonstrate which ones are more efficient according to the data size and show that

dual methods are superior and only marginally slower than methods for least squares

regression.

Finally, we present a series of numerical examples that show some of the ap-

plication of superquantile regression, such as superquantile tracking and surrogate

estimation, that we encounter in the areas of financial risk management, military

applications, reliability engineering, and uncertainty quantification. We compare

computational methods by presenting their runtimes and see how the coefficient of

determination and the adjusted one can be relevant in assessing the goodness of fit

of the obtained regression models.
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I. INTRODUCTION

A. MOTIVATION AND BACKGROUND

One of the major concerns among analysts is how to address random variables

describing possible “cost,” loss, and “damage,” but for which there is incomplete

distributional information available. A possibility is to attempt to approximate such a

loss random variable by a combination of explanatory random variables that are more

accessible in some sense. This situation naturally leads to least squares regression

and related models that estimate conditional expectations. While such models are

adequate in many situations, they fall short in contexts where a decision maker is risk

averse, i.e., is more concerned about upper-tail realizations of the loss random variable

than average loss, and views errors asymmetrically with underestimating losses being

considered more prejudicial than overestimating.

Another approach is based on quantile regression (see Koenker, 2005; Gilchrist,

2008 and references therein), which accommodates risk-averseness and an asymmetric

view of errors by estimating conditional quantiles at a certain probability level such

as those in the tail of the conditional distribution of the loss random variable. While

suitable in some contexts, quantile regression only deals with the signs of the errors

and therefore might be overly “robust” in the sense that portions of a data set can

change without necessarily impacting the best-fit regression function, as illustrated

below.

In this dissertation, we focus on contexts where a decision maker is concerned

about upper-tail realizations of the loss random variable, and errors are not only seen

asymmetrically but their magnitude is also taken into account. Of course, a parallel

development with an opposite orientation, focused on profits and gains, and concerns

about overestimating instead of underestimating is also possible but not considered

in this dissertation.

Before we proceed with the literature review, we analyze one simple example.

1



We consider a loss random variable Y and an available explanatory random variable

X. Since the distribution of the loss random variable Y might not be fully known, it

may be beneficial to approximate Y by this random vector X.

For this example, we have a table of 50 pairs of observations available, {xi, yi},

with i = 1, ..., 50, as seen in the scatter plot in Figure 1. We consider a regression

function of the form f(x) = c0 + cx, with c0, c ∈ IR. This numerical example is

artificially designed to show how different regression techniques react to small data

changes.
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Figure 1. Scatter plot of the data for the constructed example.

Figure 2(a) gives the least squares and 0.75-quantile regression functions. We

observe that the 0.75-quantile regression function divides the data set into two, such

that 25% of the observations remain above the obtained regression, while the remain-

ing 75% lay below.
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Least Squares Regression

(a) Before any changes in the data set.
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(b) After shifting six observations upwards.

Figure 2. Least squares regression vs. quantile regression at a probability level
α = 0.75, before and after some changes in the data set.
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In Figure 2(b), we see how the least squares and the quantile regression models

adjust to changes in the data set, denoted by the red dots. Notice that the observa-

tions are moved upwards without changing their position relative to the 0.75-quantile

regression curve. The balance of 25% of the observations above and 75% of them

below the quantile regression curve has not been compromised. Therefore, as we can

observe in Figure 2(b), the quantile regression curve does not shift after modifying

the six observations. Such robustness is sometimes desirable, but at other times there

is the need for responsiveness. In comparison, the least squares regression function

shifts upwards reacting to the data changes.

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

x

y

●

●

0.75−Quantile Regression
Least Squares Regression

Before changes in data
After changes in data

Figure 3. Least squares regression vs. quantile regression at a probability level
α = 0.75, before and after changing one observation in the data set.

Changing only one observation, as shown in Figure 3, we note that the ob-

tained quantile regression function changes its slope, while the least squares regression

function hardly changes. If we shift this observation even further, the change in the
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Figure 4. Least squares vs. quantile regression at a probability level α = 0.60.

slope for the quantile regression function is even more significant. Once again the

least squares regression model hardly changes. If we change this observation in red

even further upwards, we would notice no more changes in the quantile regression

function obtained in Figure 3, since the balance of the data above and below the

quantile regression would no longer be compromised.

Quantile regression is a robust regression technique, but its sensitivity to

changes in data might sometimes be too small as indicated above. Other times the

sensitivity might be too large as illustrated above where the change of a single data

point triggers a jump in the regression curve. On the contrary, the least squares re-

gression is more stable, with smooth adjustments in the curve comparable to changes

in the data set.

As another motivation to this novel regression technique, we consider a real-

world data set: the Portuguese Navy submariners effort index, provided by the Por-

tuguese Navy Submarine Squadron. In this data set we seek to estimate the random
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variable Y that represents the effort index of the submariners. This index was cre-

ated as a decision tool to support human resource management inside the Submarine

Squadron. It allows planners to assess which submariners are “due” for another mis-

sion.

In Figure 4, we have 103 observations of number of years since a submariner

has gained the insignia of the Portuguese submarine service (Xdolphins) against the

submariners effort index (Y ). In red and blue colors, we see two regression functions,

the least squares and the 0.60-quantile regression, respectively. The 0.60-quantile

regression fit analyzes the sign of the errors defined as the differences between the

loss random variable Y and the chosen linear model. Instead of only regarding the

signs of these errors, we want to also account for their magnitudes, namely we want

to analyze the average of the 40% highest effort indices.

These two examples motivate the need to move beyond least squares and quan-

tile regression and develop superquantile regression. They illustrate how a regression

technique such as the quantile regression, which accommodates risk-averseness and an

asymmetric view of errors, may not be suitable in some contexts where the decision

maker is also concerned with the magnitude of those errors as well as the “average

worst-case” behavior.

B. CONNECTIONS WITH THE LITERATURE

A quantile corresponds to “value-at-risk” (VaR) in financial terminology and

relates to “failure probability” in engineering terms. Quantile regression informs

the decision maker about these quantities conditional on values of the explanatory

random vector X. However, a quantile is not a coherent measure of risk in the

sense of Artzner et al. (1999) (see also Delbaen, 2002); it fails to be subadditive.

Consequently, a quantile of the sum of two random variables may exceed the sum

of the quantiles of each random variable at the same probability level, which runs

counter to our understanding of what “risk” should express. Moreover, quantiles cause
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computational challenges when incorporated into decision optimization problems as

objective function, failure probability constraint, or chance constraint. The use of

quantiles and the closely related failure probabilities is therefore problematic in risk-

averse decision making; see Artzner et al. (1999), Rockafellar and Uryasev (2000),

Rockafellar and Royset (2010), Krokhmal et al. (2011), and Rockafellar and Uryasev

(2013) for a detailed discussion.

A superquantile of a random variable, also called “conditional value-at-risk”

(CVaR), average value-at-risk, and expected shortfall, is an “average” of certain quan-

tiles as described further below. We prefer the application-neutral name “superquan-

tile” when deriving methods applicable broadly. This is a coherent measure of risk

well suited for risk-averse decision making and optimization; see Wang and Urya-

sev (2007) for its application in financial engineering, Kalinchenko et al. (2011) for

military applications, and Rockafellar and Royset (2010) for use in reliability engi-

neering. While this risk measure has reached prominence in risk-averse optimization,

there has been much less work on regression techniques that are consistent with it in

some sense.

The foundation of least squares and quantile regression is the fact that mean

and quantiles minimize the expectation of certain convex random functions. A nat-

ural extension to superquantile regression could then possibly involve determining a

random function that when minimizing its expectation, we obtain a superquantile.

However, such a random function does not exist (as discussed in Gneiting, 2011; Chun

et al., 2012), which has led to studies of indirect approaches to superquantile tracking

grounded in quantile regression.

For a random variable with a continuous cumulative distribution function,

a superquantile equals a conditional expectation of the random variable given real-

izations no lower than the corresponding quantile. Utilizing this fact, studies have

developed kernel-based estimators for the conditional probability density functions,

which are then integrated and inverted to obtain estimators of conditional quantiles.
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An estimator of the conditional superquantile is then finally constructed by integrat-

ing the density estimator over the interval above the quantile (Scaillet, 2005; Cai

& Wang, 2008) or forming a sample average (Kato, 2012). These studies also in-

clude asymptotic analysis of the resulting estimators under a series of assumptions,

including that the data originates from certain time series.

A superquantile of a random variable is defined in terms of an integral of

corresponding quantiles with respect to the probability level. Since the integral is

approximated by a weighted sum of quantiles across different probability levels, an

estimator of a conditional superquantile emerges as the sum of conditional quantiles

obtained by quantile regression; see Peracchi and Tanase (2008), and Leorato et al.

(2012), which also show asymptotic results under a set of assumptions including the

continuous differentiability of the cumulative distribution function of the conditional

random variables. Similarly, Chun et al. (2012) utilizes the integral expression for a

superquantile, but observes that a weighted sum of quantiles is an optimal solution

of a certain minimization problem; see Rockafellar and Uryasev (2013). Analogous to

the situation in least squares and quantile regression, an optimization problem yields

an estimator of a conditional superquantile. Though, in contrast to the case of least

squares and quantile regression, the estimator is “biased” due to the error induced by

replacing an integral by a finite sum. Under a linear model assumption, Chun et al.

(2012) also constructs a conditional superquantile estimator using an appropriately

shifted least squares regression curve based on quantile estimates of residuals. In both

cases, asymptotic results are obtained for a homoscedastic linear regression model.

Under the same model, Trindade et al. (2007) studies “constrained” regression, where

the error random variable Zf = Y − f(X) is minimized in some sense, for example

in terms of least square or absolute deviation, subject to a constraint that limits a

superquantile of Zf . While this approach does not lead to superquantile regression in

the sense we derive in this dissertation, it highlights the need for alternative techniques

for regression that incorporate superquantiles in some manner.
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The need for moving beyond classical regression centered on conditional expec-

tations is now well recognized and has driven even further research towards estimating

conditional distribution function, i.e., P {Y (x) ≤ y} for all y ∈ IR, using nonparamet-

ric kernel estimators (see for example Hall & Muller, 2003) and transformation models

(see for example Hothorn et al., 2014). We denote by Y (x) the conditional random

variable Y given that X = x ∈ IRn. Of course, conditional distribution functions

provide the “full” information about Y (x) including its quantiles and superquantiles,

and therefore also provide a means to inform a risk-averse decision maker. In this

dissertation, however, we directly focus on superquantiles, which we believe deserve

special attention due to their prominence in risk analysis.

A framework for generalized regression is laid out in Rockafellar et al. (2008),

and Rockafellar and Uryasev (2013), and regression functions are obtained as optimal

solutions of optimization problems of the form minf E(Zf ), where E is a measure of

error and f is restricted to a certain class of functions such as the affine functions.

Least squares regression is obtained by E(Zf ) = E[Z2
f ], quantile regression with the

Koenker-Bassett measure of error, but many other possibilities exist. While it is not

possible to determine a measure of error that is of the expectation type and yields

a superquantile, in Section II.A we show that when allowing for a broader class of

functionals, a measure of error that generates a superquantile is indeed available.

Such a measure of error is also hinted at in Rockafellar and Royset (2014b), but this

dissertation as well as the supporting paper by Rockafellar et al. (2014) gives the

first comprehensive treatment. In contrast to previous studies towards superquan-

tile tracking, which utilize indirect approaches and quantile regression, we here offer

a natural extension of least squares and quantile regression. We replace the mean-

squares and Koenker-Bassett (cf. eq. (II.9)) error measures by a new error measure,

and then simply minimize that error of Zf to obtain a regression function. Un-

der few assumptions, we establish the existence of a regression function, discuss its

uniqueness, and examine stability under perturbations of the distribution of (X, Y )
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for example caused by sampling. We omit a discussion of simple linear models with

independent and identically distributed (iid) noise as we believe that there is little

need for quantile and superquantile regression in such contexts as least squares re-

gression with an appropriate shift suffices. In fact, we do not separate models into

(additive) deterministic and stochastic terms. In many applications, especially in the

area of uncertainty quantification, heteroscedasticity and dependence are prevalent

making linear iid and additive models of little value.

C. SCOPE OF DISSERTATION

In this dissertation, we focus on two distinct situations where the importance

of a novel regression methodology becomes apparent. We consider a loss random

variable Y for which there is incomplete distributional information available, and an

explanatory random variable X that is more accessible in some sense.

We denote the first situation and the one we address more often during this

dissertation by surrogate estimation. It usually occurs when the explanatory random

variable is beyond our direct control, but the dependence between the loss and the

explanatory random variable makes us hopeful that, for a carefully selected regression

function, such explanatory random variable may serve as a surrogate for the loss

random variable. When the distribution of the explanatory random variable is known,

at least approximately, and the regression function has been determined, then the

distribution of f(X) is usually easily accessible. That distribution may then serve

as input to further analysis, simulation, and optimization in place of the unknown

distribution of the loss random variable Y . Such surrogate estimation may arise

in numerous contexts. “Factor models” in financial investment applications are a

result of surrogate estimation (see for example Connor, 1995; Knight et al., 2005),

where the random variable we aim to estimate may be the loss associated with a

particular asset and the explanatory variable a vector describing a small number of

macroeconomic “factors.” “Uncertainty quantification” (see for example Lee & Chen,
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2009; Eldred et al., 2011) considers the output of a system described by a random

variable, for example measuring damage, and estimates its moments and distribution

from observed realizations as well as knowledge about the distribution of the input

to the system characterized by an explanatory random vector. A main approach here

centers on surrogate estimation with the obtained regression function serving as an

estimate of the loss random variable.

Another situation arises when the primary concern is with the conditional

loss given that the explanatory random variable X takes on specific values. We aim

to select these values judiciously in an effort to minimize the conditional loss. We

denote this second situation by superquantile tracking. Of course, “minimizing” Y (x)

is not well-defined and a standard approach is to minimize a risk measure of Y (x);

see for example Krokhmal et al. (2011), and Rockafellar and Uryasev (2013). An

attractive choice is to use a superquantile measure of risk, which has nice properties

and is also computationally approachable. While in some contexts a superquantile of

the conditional loss can be evaluated easily for any specific value of the explanatory

random vector, there are numerous situations, especially beyond the financial domain,

where only a table of realizations of conditional loss is available for various values of

the explanatory random vector. In the latter situation, there is a need for building

an approximating model, based on the data, for the relevant superquantile of the

conditional loss as a function of the explanatory variables.

D. CONTRIBUTIONS

The main contribution of this dissertation is the development of a novel re-

gression framework that naturally extends least squares and quantile regressions to

contexts where one seeks to assess regression errors not by squaring them, as in the

case of least squares regression, or by looking at their signs, as in the case of quantile

regression, but by weighing larger levels of underestimation increasingly heavily in a

manner consistent with superquantiles.
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This generalized regression technique is the first attempt to use superquantiles

directly in the regression model as opposed to an approximation of conditional quan-

tiles. We develop the fundamental theory for the new regression technique and deal

with issues encountered in any generalized regression framework, such as existence

and possible uniqueness of the obtained regression functions. We discuss consistency

and stability of these regression functions under perturbations due to possible mea-

surement errors and approximating empirical distributions generated by samples of

the underlying distribution. And we also examine rate of convergence results under

mild assumptions. We present means of assessing the goodness of fit of the obtained

quantile and superquantile regression models, by applying the concepts of coefficient

of determination, adjusted coefficient of determination, and Cook’s distance to quan-

tile and superquantile regression techniques.

We develop two distinct classes of computational methods, one solving the

superquantile regression problem by means of analytical and numerical integration

techniques, another by relying on the dualization of risk as a step to build a new

regression problem that we apply to discrete cases. We discuss complexity results of

both classes of computational methods, and compare them to the complexity results

for least squares and quantile regressions.

We present a series of numerical examples from the areas of financial invest-

ment, military applications, reliability engineering, and uncertainty quantification.

E. DISCLAIMER

The information presented and views expressed in this dissertation do not

reflect the official policy or position of the U.S. Navy, the U.S. Department of De-

fense, the U.S. Government, the Portuguese Navy, and the Portuguese Ministry of

National Defense or the Portuguese Government. The data sets we use in our two

military applications numerical examples are obtained from unclassified sources, and

are employed in this dissertation in order to illustrate some interesting and meaningful
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conclusions from our theoretical results.

The first military application example considers the results of an online survey

of winged Naval Helicopter Pilots of the U.S. Navy; see Phillips (2011) for details.

As stated in Phillips (2011), this study is approved by the NPS Institutional Review

Board (IRB) and has an IRB protocol number: NPS.2011.0053-IR-EP7-A. The second

military application example considers a data set provided by the Portuguese Navy

Submarine Squadron.

F. ORGANIZATION

Chapter II addresses the foundations of the superquantile regression, as an

extension of least squares and quantile regressions. The chapter discusses the su-

perquantile regression problem, the issues encountered in such generalized regression

frameworks, and provides an approach for assessing the goodness of fit of the obtained

quantile and superquantile regression models.

Chapter III develops two classes of computational methods to solve superquan-

tile regression problems. The first denoted by primal method solves superquantile

regression problems using analytical and numerical integration schemes. The second

which we call the dual method is based on the dualization of risk and utilizes such

advantages to build a new superquantile regression problem with promising compu-

tational performance, especially for large sample sizes. It also discusses complexity

results for the presented algorithms.

Chapter IV provides several numerical results that illustrate not only the pri-

mal and dual methods, but also some of the main applications of the superquantile

regression, such as superquantile tracking and surrogate estimation.

Chapter V summarizes the theoretical and numerical results, presents our

conclusions and suggests future research opportunities.
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II. FOUNDATIONS OF SUPERQUANTILE

REGRESSION

In this chapter, we develop a regression technique that extends least squares

and quantile regressions, centered on expectations and quantiles, respectively, to one

that focuses on superquantiles. This material to a large extent is based on Rockafellar

et al. (2014).

Section II.A describes measures of error, risk, deviation, and regret, first in the

context of quantile regression and then for the extension to superquantile regression.

Section II.B defines superquantile regression as the minimization of a measure of er-

ror, provides an alternative approach for solving superquantile regression problems

based on the measure of deviation, discusses existence and uniqueness of the regres-

sion function, and provides asymptotic results. Section II.C proposes an approach

for assessing the goodness of fit of the regression function obtained by quantile and

superquantile regressions, using extensions of the definitions of coefficient of determi-

nation and Cook’s distance.

A. QUANTILES, SUPERQUANTILES, AND ERRORS

While our development centers on superquantiles, it is beneficial to maintain

a parallel description of quantiles. As we will see in Subsection II.A.4, quantile

regression achieved by minimizing a Koenker-Bassett error of the random variable Zf ,

as seen in Subsection II.A.3 in more detail, provides a road map for the construction

of superquantile regression, which is simply achieved by minimizing another measure

of error. We start, however, with definitions and assumptions, and then provide an

overview of the fundamental risk quadrangle, its application to the superquantile as

the statistic, and finally we present the corresponding measures of error, deviation,

and regret of quantiles and superquantiles.
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1. Definitions and Assumptions

We consider a loss random variable Y as a function on a probability space

(Ω,F , P ), and in our context, we assume that Y has a finite second moment, as

follows

Y ∈ L2 := L2(Ω,F , P ) := {Y : Ω→ IR | Y is F -measurable, E[Y 2] <∞}. (II.1)

Here Ω is a sample space with ω ∈ Ω being a possible outcome; F is an event

space; and P is a probability measure that assigns probabilities to these events,

P : F → [0, 1].

We now give some useful definitions. We consider the following distinct func-

tionals on L2, in the sense of Rockafellar and Uryasev (2013), that assign numerical

values to random variables, e.g., a loss random variable Y . A measure of error E(Y )

quantifies the “nonzeroness” in Y . The L2-norm of Y is a possible measure of error.

A measure of risk R(Y ) serves as surrogate for the overall loss in Y . For example,

one could think of R(Y ) = sup{Y } (the essential supremum) as such a surrogate,

or less conservatively R(Y ) = E[Y ]. A measure of deviation D(Y ) quantifies the

“nonconstancy” as uncertainty in Y , and can be seen as a generalization of the stan-

dard deviation of Y . A measure of regret V(Y ) quantifies the displeasure of obtaining

mix realizations of Y , which might be better when Y ≤ 0 (representing “gains”) or

worse when Y > 0 (representing “losses”). And a statistic S(Y ) is associated with Y

through E and V , as described below.

According to Rockafellar et al. (2008), we say that a measure of risk is coherent

if the following axioms hold:

(i) R(c) = c for a constant c.

(ii) R(λY ) = λR(Y ) when λ > 0 (positive homogeneity).

(iii) R(Y + Y ′) ≤ R(Y ) +R(Y ′) (subadditivity).

(iv) R(Y ) ≤ R(Y ′) when Y ≤ Y ′ (monotonicity).
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This definition is equivalent to the one described in Artzner et al. (1999), where

axiom (i) is replaced by translation invariance. When we refer to a coherent measure

of risk, we refer to the axioms listed above. The concept of a coherent measure of risk

is important in our context because it follows the natural way we think about risk,

where monotonicity is a requirement. Moreover, if R(Y ) > E[Y ], for a nonconstant

random variable Y , then R(·) is averse.

According to Rockafellar and Uryasev (2013), a regular measure of risk sat-

isfies the axiom (i) stated previously, as well as convexity, aversity, and closedness,

{Y |R(Y ) ≤ c} for all constants c ∈ IR. Obviously, the expectation is not averse,

therefore not regular.

Examples of measures of risk are quantiles and superquantiles of a loss random

variable Y at distinct probability levels α, as we define below. For a probability

level α ∈ (0, 1), the α-quantile of a random variable Y with cumulative distribution

function FY is defined as

qα(Y ) := min {y ∈ IR | FY (y) ≥ α} .

Its quantiles are as fundamental to Y as the distribution function, but are problem-

atic to incorporate in risk analysis and optimization due to their lack of coherency

as well as increased computational challenges; see Rockafellar and Royset (2014b).

Superquantiles have more favorable properties. For α ∈ [0, 1), the α-superquantile of

a random variable Y is defined as

q̄α(Y ) :=
1

1− α

∫ 1

α

qβ (Y ) dβ. (II.2)

Since a superquantile is a coherent measure of risk (see Rockafellar & Uryasev, 2000;

Rockafellar & Uryasev, 2002) and by virtue of being an “average” of quantiles, it is

also more stable than a quantile in some sense, and is well suited for applications.

For α = 1, we define q̄α(Y ) := sup{Y }. Since

q̄0(Y ) =

∫ 1

0

qβ(Y )dβ =

∫ 1

0

F−1
Y (β)dβ = E[Y ], (II.3)
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we therefore focus on α ∈ (0, 1) throughout the dissertation to avoid distractions by

these special cases.

Equivalent to equation (II.2), we have an even more stable and conservative

measure of risk, the α-second-order superquantile, and it is defined as

¯̄qα(Y ) :=
1

1− α

∫ 1

α

q̄β(Y )dβ, (II.4)

for a random variable Y ∈ L2 and α ∈ (0, 1).

In reliability terminology, quantiles and superquantiles correspond to failure

and buffered failure probabilities. The failure probability of a loss random variable Y

is

p(Y ) := P {Y > 0} = 1− FY (0),

which corresponds to

p(Y ) = 1− α with α such that qα(Y ) = 0

if there is no probability atom at zero. Analogously to the latter expression, the

buffered failure probability (see Rockafellar & Royset, 2010) of a loss random variable

Y is defined as

p̄(Y ) := 1− α with α such that q̄α(Y ) = 0. (II.5)

Requiring that p̄(Y ) ≤ 1 − α is therefore equivalent to the constraint q̄α(Y ) ≤ 0.

Consequently, in applications with a buffered failure probability constraint on a (con-

ditional) loss random variable Y (x) as well as when the goal is to minimize a su-

perquantile of Y (x) directly, there is a need to estimate q̄α(Y (x)) as a function of

x ∈ IRn. Quantiles and superquantiles are connected through a trade-off formula

that leads to quantile regression, as discussed in Subsection II.A.3.

2. Overview of the Fundamental Risk Quadrangle

The “Fundamental Risk Quadrangle” is a concept introduced by Rockafellar

and Uryasev (2013), which establishes the connections between distinct measures,

described in Subsection II.A.1, of a random variable whose orientation is such that
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upper-tail realizations are unfortunate and low realizations are favorable, as described

in Chapter I. The interrelationships of such numerical quantities allow distinct com-

parisons and applications in various analyses, such as risk management.

Diagram 3 in Rockafellar and Uryasev (2013) defines the general relationships

between five properties of a random variable Y , measures of error, risk, deviation,

and regret, and the corresponding statistic, as we list below. We use these general

relationships in the next two subsections.

Error measure = E(Y ) = V(Y )− E[Y ]

Risk measure = R(Y ) = minc0{c0 + V(Y − c0)}

Deviation measure = D(Y ) = R(Y )− E[Y ]

Regret measure = V(Y ) = E(Y ) + E[Y ]

Statistic = S(Y ) = argminc0{c0 + V(Y − c0)} = argminc0{E(Y − c0)}

We now look at the families of risk quadrangles where the expectation and the

quantile are the statistic. The following two risk quadrangles are described in detail

in Rockafellar and Uryasev (2013). We list both quadrangles for illustration and to

exemplify how one obtains least squares and quantile regressions by minimizing a

certain measure of error.

Variance Version of Mean-based Quadrangle:

(Example 1’ in Rockafellar & Uryasev, 2013)

Error measure = E(Y ) = λE[Y 2]

Risk measure = R(Y ) = E[Y ] + λσ2(Y )

Deviation measure = D(Y ) = λσ2(Y )

Regret measure = V(Y ) = E[Y ] + λE[Y 2]

Statistic = S(Y ) = E[Y ] = mean
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Quantile-based Quadrangle: (at any probability level α ∈ (0, 1))

(Example 2 in Rockafellar & Uryasev, 2013)

Error measure = Eα(Y ) = E
[

α
1−α max {0, Y }+ max {0,−Y }

]
Risk measure = Rα(Y ) = q̄α(Y ) = α-superquantile

Deviation measure = Dα(Y ) = q̄α(Y )− E[Y ]

Regret measure = Vα(Y ) = 1
1−αE [max {0, Y }]

Statistic = S(Y ) = qα(Y ) = α-quantile

With the idea in mind that one minimizes a measure of error to obtain its correspond-

ing statistic in the sense of the “Fundamental Risk Quadrangle,” we realize that this

approach allows us to naturally extend the existing foundations of least squares and

quantile regressions to create new foundations for superquantile regression.

3. Quantile Regret and Error Measures

Both α-quantiles and α-superquantiles, with α ∈ (0, 1), of a loss random

variable Y are expressed in terms of an optimization problem involving the measure

of regret

Vα(Y ) :=
1

1− α
E[max{0, Y }],

as seen in Rockafellar and Uryasev (2013). Quantiles and superquantiles then follow

as

qα(Y ) ∈ argmin
c0∈IR

{c0 + Vα(Y − c0)} (II.6)

q̄α(Y ) = min
c0∈IR
{c0 + Vα(Y − c0)} , (II.7)

where in fact qα(Y ) is the lowest optimal solution if multiple solutions exist.

The expression for qα(Y ) is the essential building block for quantile regression,

but since we ultimately wish to go beyond the class of constant functions as candidates

20



for a regression function we need to pass to a measure of error Eα constructed from

Vα by setting

Eα(Y ) := Vα(Y )− E[Y ]

for any loss random variable Y (with E[|Y |] <∞). Direct application of the definition

of the measure of error and recognition that a constant term in an objective function

is immaterial with respect to the optimal solution gives

qα(Y ) ∈ argmin
c0∈IR

Eα(Y − c0), (II.8)

with

Eα(Y − c0) =
1

1− α
E[max{0, Y − c0}]− E[Y − c0]

= E

[
α

1− α
max{0, Y − c0}+ max{0,−Y + c0}

]
(II.9)

being a (scaled) Koenker-Bassett error (Koenker, 2005). Quantile regression centers

on computing this argmin with “minimizing the error of Y −c0 over c0 ∈ IR” replaced

by “minimizing the error of Y − f(X) over a class of functions f : IRn → IR,” often

taken to be the affine functions. We view qα(Y ) as the “closest” scalar to the random

variable Y under a Koenker-Bassett error.

If our goal simply were to estimate q̄α(Y ) of a loss random variable Y for a

given probability level α ∈ (0, 1), the above expressions would have sufficed, pos-

sibly passing to an empirical distribution given by a sample if FY is unknown. In

the present context, however, connections with the underlying explanatory random

vector X and the focus on the “approximation” of Y warrants a parallel develop-

ment to that of quantile regression but now centered on a superquantile. In view of

the above review of quantile regression, it is clear that superquantile regression will

involve the minimization of some measure of error that returns the superquantile as

argmin. Classical least squares regression can be viewed similarly as returning a (con-

ditional) expectation as argmin when minimizing the mean-square measure of error,

i.e., E[Y ] = argminc0∈IRE[(Y − c0)2]. The next subsection develops such a measure
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of error by first constructing a corresponding measure of regret, for the superquantile

as the statistic.

4. Superquantile Regret and Error Measures

We start this subsection by establishing the finiteness of a superquantile under

the assumption that the loss random variable Y has a finite second moment.

We know from Rockafellar and Uryasev (2013) that q̄α is a convex, positively

homogenous, monotonic, and averse functional on L2 for α ∈ (0, 1). From Theorem

3 in Rockafellar and Royset (2014b), see also Rockafellar et al. (2014), we know that

q̄α is bounded as stated next. We adopt the notation σ2(Y ) = E[(Y − E[Y ])2].

Proposition II.1. For Y ∈ L2 and α ∈ (0, 1) one has that

q̄α(Y ) ≤ E[Y ] +
1√

1− α
σ(Y ). (II.10)

Proof.

Suppose that the quantile qα(Y ), viewed as a function of the probability level, is

continuous at α. Let Iα be the indicator function of the interval [qα(Y ),∞). We then

have by the Schwarz inequality that

(1− α)q̄α(Y − E[Y ]) = E[(Y − E[Y ])Iα]

≤
√
E[(Y − E[Y ])2]

√
E[I2

α]

≤ σ(Y )
√

1− α.

Then, since q̄α(Y −E[Y ]) = q̄α(Y )−E[Y ], the result follows from dividing by 1− α.

Thus, (II.10) is valid under the continuity assumption about the quantile, which is

true for all but at most countable many α. By continuity on both sides of (II.10)

with respect to α, it must then hold for all α ∈ (0, 1).

The measure of regret at probability level α ∈ (0, 1) that serves in the context

of superquantile regression is defined for any loss random variable Y as

V̄α(Y ) :=
1

1− α
V̄0(Y ), (II.11)

22



where

V̄0(Y ) :=

∫ 1

0

max{0, q̄β(Y )}dβ. (II.12)

These expressions appear in Rockafellar and Royset (2014b), where their discovery,

which is related to the Hardy-Littlewood transform, is described. Here, we provide

the alternative, direct proof of Rockafellar et al. (2014), on how these expressions

lead to the superquantile as optimal solution of (II.7). We start, however, with two

preliminary results and the definition of a corresponding measure of error.

Lemma II.1. For Y ∈ L2,

V̄0(Y ) ≤ σ(Y ) + max{0, E[Y ] + σ(Y )}. (II.13)

Proof.

From (II.10) and (II.12) we have

V̄0(Y ) ≤
∫ 1

0

max{0, θY (β)}dβ for θY (β) = E[Y ] +
1√

1− β
σ(Y ). (II.14)

We consider three cases. In Case 1, we suppose that θY (β) ≥ 0 for all β ∈ [0, 1].

Then the right hand side of (II.14) is given by∫ 1

0

θY (β)dβ = E[Y ] + σ(Y )

∫ 1

0

(1− β)−1/2dβ with

∫ 1

0

(1− β)−1/2dβ = 2. (II.15)

Therefore, V̄0(Y ) ≤ E[Y ] + 2σ(Y ) in Case 1. In Case 2a, we suppose that θY (β) ≤ 0

for all β ∈ (0, 1). Then obviously V̄0(Y ) ≤ 0. Finally, in Case 2b, let θY (β) < 0

for some β ∈ (0, 1), but not all. Then necessarily σ(Y ) > 0 and E[Y ] ≤ −σ(Y ),

and θY (β) strictly increases with respect to β. Let ᾱ be the unique β ∈ (0, 1) with
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θY (ᾱ) = 0, namely when
√

1− ᾱ = σ(Y )/(−E[Y ]). Then we have that∫ 1

0

max{0, θY (β)}dβ =

∫ 1

ᾱ

θY (β)dβ

= (1− ᾱ)E[Y ] + σ(Y )

∫ 1

ᾱ

(1− β)−1/2dβ

= (1− ᾱ)E[Y ] + 2σ(Y )
√

1− ᾱ

=
σ(Y )2

E[Y ]2
E[Y ] + 2σ(Y )

σ(Y )

−E[Y ]

=
σ(Y )2

−E[Y ]

≤ σ(Y ).

Thus, in Case 2b we get V̄0(Y ) ≤ σ(Y ). The conclusion then follows by putting

together the cases.

We observe that for α ∈ (0, 1), V̄α is also a convex, positively homogeneous,

monotonic, and averse functional on L2, which follows from the properties of the

superquantile (Rockafellar & Uryasev, 2013), and by the above result it is also finite,

and consequently continuous. A corresponding measure of error is defined for Y ∈ L2

by

Ēα(Y ) := V̄α(Y )− E[Y ] (II.16)

and referred to as a superquantile error. Obviously, Ēα is also convex and positively

homogeneous. It also satisfies the following properties.

Proposition II.2. For any α ∈ (0, 1) and Y ∈ L2, a superquantile error satisfies

(a) Ēα(Y ) = 0 when Y ≡ 0,

(b) Ēα(Y ) > 0 when Y 6≡ 0, and

(c) Ēα(Y ) ≥ min{1, α/(1− α)}|E[Y ]|.

Proof.

Since q̄β(0) = 0 for all β ∈ [0, 1], (a) follows trivially.
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Since V̄α is averse, we have that for Y ∈ L2 Ēα(Y ) = V̄α(Y )−E[Y ] > E[Y ]−

E[Y ] = 0 when Y is not a constant. To complete part (b), we therefore only need to

consider nonzero constants. If Y is a positive constant K, then

1

1− α

∫ 1

0

max{0, q̄β(Y )}dβ − E[Y ] >

∫ 1

0

max{0, q̄β(Y )}dβ − E[Y ]

> K − E[Y ]

> 0.

If Y is a negative constant K, then

1

1− α

∫ 1

0

max{0, q̄β(Y )}dβ − E[Y ] =
1

1− α

∫ 1

0

max{0, K}dβ − E[Y ]

= 0− E[Y ]

> 0,

which completes part (b).

Since q̄β(Y ) ≥ E[Y ] for all β ∈ [0, 1], we have whenever E[Y ] ≥ 0 the bound

1

1− α

∫ 1

0

max{0, q̄β(Y )}dβ − E[Y ] ≥ 1

1− α

∫ 1

0

max{0, E[Y ]}dβ − E[Y ]

≥ α

1− α
E[Y ].

And when E[Y ] < 0,

1

1− α

∫ 1

0

max{0, q̄β(Y )}dβ − E[Y ] ≥ 1

1− α

∫ 1

0

max{0, E[Y ]}dβ − E[Y ]

≥ −E[Y ].

Part (c) then follows by combining the two results.

By Proposition II.2 and the above discussion, Ēα is a regular measure of error.

We now show that a superquantile is a unique optimal solution of optimization prob-

lems involving V̄α and Ēα. As mentioned, the connection between a superquantile and

V̄α is also reached in Theorem 7 of Rockafellar and Royset (2014b) through different

means. Here we derive the direct proof and the connection with a superquantile error

(see Rockafellar et al., 2014).
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Theorem II.1. (Superquantile as optimal solution) For Y ∈ L2 and α ∈ (0, 1),

q̄α(Y ) = argmin
c0∈IR

{c0 + V̄α(Y − c0)}

= argmin
c0∈IR

Ēα(Y − c0). (II.17)

Proof.

Let ϕ(c) = c + V̄α(Y − c) and ψβ(c) = max{0, q̄β(Y ) − c}. These are both convex

functions of c, and ψβ is nonincreasing. We can use the criterion that

c̄ ∈ argmin
c

ϕ(c)⇐⇒ ϕ′+(c̄) ≥ 0, ϕ′−(c̄) ≤ 0,

where, because of the monotonicity of ψβ,

ϕ′+(c) = 1 +
1

1− α

∫ 1

0

(ψβ)′−(c)dβ, ϕ′−(c) = 1 +
1

1− α

∫ 1

0

(ψβ)′+(c)dβ,

(ψβ)′+(c) =

 −1 if q̄β(Y ) > c,

0 if q̄β(Y ) ≤ c,
(ψβ)′−(c) =

 −1 if q̄β(Y ) ≥ c,

0 if q̄β(Y ) < c.

Therefore ∫ 1

0

(ψβ)′+(c)dβ =

∫ 1

0

(ψβ)′−(c)dβ

= −(1− γ) for c = q̄γ(Y ),

in which case (ψβ)′(c) = (ψβ)′+(c) = (ψβ)′−(c) = 1−(1−γ)/(1−α). Thus, (ψβ)′(c) = 0

corresponds to c = q̄γ(Y ) for γ = α. Consequently, the first equality of the theorem

holds. The second follows directly from (II.16) and the fact that a constant in an

objective function is immaterial with regard to the argmin.

The foundations for quantile regression are given by equations (II.6) and (II.8).

Analogously, the expressions in (II.17) provide the path to superquantile regression

as developed in Section II.B. In fact, Theorem II.1 shows that q̄α(Y ) is the uniquely

“closest” scalar to Y in the sense of the superquantile error. The optimal value in

(II.17) defines a measure of risk (see Rockafellar & Royset, 2014b)

R̄α(Y ) := min
c0∈IR
{c0 + V̄α(Y − c0)}

= q̄α(Y ) + V̄α(Y − q̄α(Y ))
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for Y ∈ L2 analogously to q̄α(Y ) in (II.7). A corresponding measure of deviation is

given by

D̄α(Y ) := min
c0∈IR
Ēα(Y − c0)

= R̄α(Y )− E[Y ]. (II.18)

We note that parallel to (II.2) (see Rockafellar & Royset, 2014b),

R̄α(Y ) =
1

1− α

∫ 1

α

q̄β(Y )dβ

and, consequently,

D̄α(Y ) =
1

1− α

∫ 1

α

q̄β(Y )dβ − E[Y ].

The measures of regret, error, risk, and deviation, V̄α, Ēα, R̄α, and D̄α, respectively,

for a probability level α ∈ (0, 1), form a family of risk quadrangles, in the sense of

Rockafellar and Uryasev (2013), that corresponds to the superquantile as the statistic,

as shown below.

Superquantile-based Quadrangle: (at any probability level α ∈ (0, 1))

Error measure = Ēα(Y ) = 1
1−α

∫ 1

0
max {0, q̄β(Y )} dβ − E[Y ]

Risk measure = R̄α(Y ) = ¯̄qα(Y ) = α-second-order superquantile

Deviation measure = D̄α(Y ) = ¯̄qα(Y )− E[Y ]

Regret measure = V̄α(Y ) = 1
1−α

∫ 1

0
max {0, q̄β(Y )} dβ

Statistic = S(Y ) = q̄α(Y ) = α-superquantile

We note here that the measure of deviation D̄α plays a central role in the

remainder of the dissertation as it facilitates simplifications, goodness of fit tests, and

computational methods.

27



B. SUPERQUANTILE REGRESSION

Theorem II.1 and the development leading to quantile regression direct us

to a new regression methodology that is centered on a superquantile error. The

next subsection poses the regression problem, provides its properties, and discusses

stability under perturbations. The section ends with a discussion of superquantile

tracking.

1. Superquantile Regression Problem

While Theorem II.1 shows that the “best” scalar approximation of a random

variable Y in the sense of a superquantile error is the corresponding superquantile,

we now go beyond the class of constant functions to utilize the connection with an

underlying explanatory random vector X. We focus on regression functions of the

form

f(x) = c0 + 〈c, h(x)〉, c0 ∈ IR, c ∈ IRm,

for a given “basis” function h : IRn → IRm. This class satisfies most practical needs

including that of linear regression where m = n and h(x) = x. Extensions beyond

this class are also possible but not dealt with in this dissertation.

We now define the Superquantile Regression Problem SqR, for any h : IRn →

IRm and α ∈ (0, 1), where

Z(c0, c) := Y − (c0 + 〈c, h(X)〉)

is the error random variable, whose distribution depends on c0, c, h, and the joint

distribution of (X, Y ). We denote by C̄ ⊂ IRm+1 the set of optimal solutions of SqR

and refer to (c̄0, c̄) ∈ C̄ as a regression vector.

Superquantile Regression Problem:

SqR : min
c0∈IR,c∈IRm

Ēα (Z(c0, c)) =
1

1− α

∫ 1

0

max {0, q̄β(Z(c0, c))} dβ−E[Z(c0, c)].
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The objective function Ēα(Z(·, ·)) is well-defined and finite when the distri-

bution of (X, Y ) and h is such that Z(c0, c) ∈ L2 for all c0 ∈ IR, and c ∈ IRm. A

sufficient condition that ensures this property is that Y, h1(X), ..., hm(X) ∈ L2. We

adopt the notation

H = h(X), Hi = hi(X), i = 1, 2, ...,m.

Lemma II.2. If Y, H1, ..., Hm ∈ L2, then Z(c0, c) ∈ L2 for all c0 ∈ IR, and c ∈ IRm.

In surrogate estimation, c̄0 + 〈c̄, h(X)〉, with (c̄0, c̄) ∈ C̄, provides the best

approximation of Y in the sense of a superquantile error. For example, after having

computed (c̄0, c̄), the analysis could proceed with examining the moments, quantiles,

and superquantiles of c̄0 + 〈c̄, h(X)〉 as surrogates for the corresponding quantities of

Y . If X is Gaussian and h is affine, then c̄0 + 〈c̄, h(X)〉 is a Gaussian approximation

of Y easily examined and utilized in further studies. It may also be of interest to

examine c̄0 + 〈c̄, h(X)〉 under hypothetical distributions of X.

As a direct consequence of the Regression Theorem in Rockafellar and Uryasev

(2013) (see also Theorem 3.1 in Rockafellar et al., 2008), we obtain that a regression

vector can equivalently be determined from a measure of deviation D̄α.

Proposition II.3. Suppose that Y,H1, ..., Hm ∈ L2. Then, the set of regression
vectors C̄ of SqR is equivalently obtained as

C̄ =

{
(c̄0, c̄) ∈ IRm+1 | c̄ ∈ argmin

c∈IRm
D̄α(Z0(c)), c̄0 = q̄α(Z0(c̄))

}
,

where Z0(c) := Y − 〈c, h(X)〉.

Proposition II.3 implies computational advantages as the (m+ 1)-dimensional

optimization problem SqR is replaced by a problem in m dimensions with a simpler

objective function, which we fully utilize in Chapters III and IV. Moreover, the result

also proves to be beneficial in analysis of regression vectors.
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We now define the Deviation-based Superquantile Regression Problem DSqR,

for any h : IRn → IRm and α ∈ (0, 1):

Deviation-based Superquantile Regression Problem:

DSqR : min
c∈IRm

D̄α (Z0(c)) =
1

1− α

∫ 1

α

q̄β(Z0(c))dβ −E[Z0(c)],

with c̄0 being obtained by setting c̄0 = q̄α(Z0(c̄)).

The existence of a regression vector is ensured by the next result, which also

provides conditions for uniqueness.

Theorem II.2. (Existence and uniqueness of regression vector) If Y,H1, ..., Hm ∈ L2,
then SqR is a convex problem with a set of optimal solutions C̄ that is nonempty,
closed, and convex.

(a) C̄ is bounded if and only if the random vector X and the basis function h satisfy
the condition that 〈c, h(X)〉 is not constant unless c = 0.

(b) If in addition, for every (c0, c), (c
′
0, c
′) ∈ IRm+1, with c 6= c′, there exists a β0 ∈

[0, 1) such that

0 ≤ q̄β(Z(c0, c) + Z(c′0, c
′)) < q̄β(Z(c0, c)) + q̄β(Z(c′0, c

′)) (II.19)

for all β ∈ [β0, 1), then C̄ is a singleton.

Proof.

Since Y ∈ L2 implies that Ēα(Y ) < ∞, by Lemma II.1, we deduce the two first

conclusions from Theorem 3.1 in Rockafellar et al. (2008). Hence, we only need to

show that C̄ is a singleton.

Suppose for the sake of a contradiction that (c0, c), (c
′
0, c
′) ∈ C̄ and (c0, c) 6=

(c′0, c
′), with corresponding optimal value ξ ≥ 0, i.e., ξ = Ēα(Z(c0, c)) = Ēα(Z(c′0, c

′)).

We consider two cases.

First, suppose that ξ = 0. By Proposition II.2, Z(c0, c) = Z(c′0, c
′) = 0 and

consequently

c0 + 〈c,H〉 = c′0 + 〈c′, H〉,
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which implies that 〈c− c′, H〉 = c′0− c0. Under the assumption that 〈c, h(X)〉 is only

constant when c = 0, we must have that c − c′ = 0. Then, also c′0 − c0 = 0 follows,

which contradicts the hypothesis that (c0, c) 6= (c′0, c
′).

Second, suppose that ξ > 0. If c = c′, then a direct consequence of Propo-

sition II.3 and the fact that every random variable has a unique superquantile at

each probability level, is that also c0 = c′0, which again contradicts our hypothesis.

Consequently, we focus on the case with c 6= c′, for which there exists a β0 such that

(II.19) holds for all β ∈ [β0, 1). Trivially, then

max{0, q̄β(Z(c0, c) + Z(c′0, c
′))} < max{0, q̄β(Z(c0, c))}+ max{0, q̄β(Z(c′0, c

′))}

for β ∈ [β0, 1). If β ∈ (0, 1) is such that q̄β(Z(c0, c) + Z(c′0, c
′)) < 0, then

max{0, q̄β(Z(c0, c) + Z(c′0, c
′))} ≤ max{0, q̄β(Z(c0, c))}+ max{0, q̄β(Z(c′0, c

′))}

as the left-hand side vanishes and the right-hand side is nonnegative. Hence,∫ 1

0

max{0, q̄β(Z(c0, c) + Z(c′0, c
′))}dβ

<

∫ 1

0

max{0, q̄β(Z(c0, c))}dβ +

∫ 1

0

max{0, q̄β(Z(c′0, c
′))}dβ

and also

Ēα(Z(c0, c) + Z(c′0, c
′)) < Ēα(Z(c0, c)) + Ēα(Z(c′0, c

′)). (II.20)

Let

(c′′0, c
′′) = (1/2)(c0, c) + (1/2)(c′0, c

′)

and therefore

2Z(c′′0, c
′′) = Z(c0, c) + Z(c′0, c

′).

By the optimality of ξ, the positive homogeneity of Ēα, and (II.20), we find that

2ξ ≤ 2Ēα(Z(c′′0, c
′′)),
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and that

2Ēα(Z(c′′0, c
′′)) = Ēα(2Z(c′′0, c

′′))

< Ēα(Z(c0, c)) + Ēα(Z(c′0, c
′)).

Since

Ēα(Z(c0, c)) + Ēα(Z(c′0, c
′)) = 2ξ,

we finally get that

2ξ ≤ 2ξ,

which cannot hold. In view of this contradiction, the conclusion follows.

While Theorem II.2 gives a sufficient condition for uniqueness of the regression

vector, in general uniqueness cannot be expected. For example, suppose that the

random vector (X, Y ), with X scalar valued, has the possible and equally likely

realizations (1, 1), (2, 2), and (3, 1). Then, q̄β(Z0(c)) = max{1− c, 2− 2c, 1− 3c} for

β > 2/3 and E[Z0(c)] = 4/3 − 2c. It is straightforward to show that for α > 2/3,

any c ∈ [−1, 1] minimizes D̄α(Z0(·)). Consequently, in view of Proposition II.3, any

c ∈ [−1, 1], with a corresponding c0 = max{1−c, 2−2c, 1−3c}, minimizes Ēα(Z(·, ·))

for α > 2/3, as shown in Figure 5. The minimum error is 2/3.

A unique regression vector is indeed achieved in the normal case as stated

next.

Proposition II.4. Suppose that (H,Y ) is normally distributed with positive definite
variance-covariance matrix. Then, C̄ is a singleton.

Proof.

Let Σ be the variance-covariance matrix of (H,Y ), with Cholesky decomposition

Σ = LL>. For any β ∈ (0, 1) and c ∈ IRm, Z0(c) is also normal with mean E[Z0(c)] =

〈c̃, E[(H,Y )]〉 and variance σ2(Z0(c)) = 〈c̃,Σc̃〉, where c̃ = (−c, 1). Thus,

q̄β(Z0(c)) = E[Z0(c)] + kβσ(Z0(c)) = E[Z0(c)] + kβ‖L>c̃‖,
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Figure 5. Example of multiple optimal solutions for problem SqR.

where kβ = φ(Φ−1(β))/(1− β), with φ and Φ being the standard normal probability

density and cumulative distribution functions, respectively.

For c, c′ ∈ IRm, with c 6= c′, there is no constant k > 0 such that (−c, 1) =

k(−c′, 1). Let c̃ = (−c, 1) and c̃′ = (−c′, 1). Since Σ is positive definite, the upper-

triangular matrix L> is unique and full rank. Consequently, the null space of L>

contains only the zero vector and L>(c̃ − kc̃′) 6= 0 for all scalars k > 0. Since the

triangle inequality for two vectors holds strictly whenever the two vectors cannot be

expressed as a positive multiple of each other, we therefore find that

‖L>c̃+ L>c̃′‖ < ‖L>c̃‖+ ‖L>c̃′‖.

Now for the sake of a contradiction suppose that c, c′ ∈ IRm both minimize

D̄α(Z0(·)) and attain the minimum value ξ ∈ IR, but c 6= c′. Let

c′′ = (1/2)c+ (1/2)c′, c̃′′ = (−c′′, 1), and γα =

∫ 1

α

kβdβ/(1− α) > 0.
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Then,

D̄α(Z0(c′′)) =
1

1− α

∫ 1

α

q̄β(Z0(c′′))dβ − E[Z0(c′′)]

= E[Z0(c′′)] + γα‖L>c̃′′‖ − E[Z0(c′′)]

=
γα
2
‖L>c̃+ L>c̃′‖

<
γα
2

(‖L>c̃‖+ ‖L>c̃′‖),

and since

γα
2

(‖L>c̃‖+ ‖L>c̃′‖) =
1

2

(
E[Z0(c)] + γα‖L>c̃‖ − E[Z0(c)]

)
+

+
1

2

(
E[Z0(c′)] + γα‖L>c̃′‖ − E[Z0(c′)]

)
=

1

2

(
D̄α(Z0(c))

)
+

1

2

(
D̄α(Z0(c′))

)
=

1

2
(ξ + ξ)

= ξ,

we have that D̄α(Z0(c′′)) < ξ. However, this contradicts the optimality of c, c′ and we

reach the conclusion.

We next turn to consistency and stability of the regression vector. Of course,

the joint distribution of (X, Y ) is rarely available in practice and one may need to

pass to an approximating empirical distribution generated by a sample. Moreover,

perturbations of the “true” distribution of (X, Y ) may occur due to measurement

errors in the data and other factors. We consider these possibilities and let (Xν , Y ν) be

a random vector whose joint distribution approximates that of (X, Y ) in some sense.

For example, (Xν , Y ν) may be governed by the empirical distribution generated by an

independent and identically distributed sample of size ν from (X, Y ). Presumably,

as ν → ∞, the approximation of (X, Y ) by (Xν , Y ν) improves as stated formally

below. Regardless of the nature of (Xν , Y ν), we define the approximate error random

variable as

Zν(c0, c) := Y ν − c0 − 〈c, h(Xν)〉,
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and the corresponding Approximate Superquantile Regression Problem SqRν as fol-

lows:

Approximate Superquantile Regression Problem:

SqRν : min
c0∈IR,c∈IRm

Ēα (Zν(c0, c)) =
1

1− α

∫ 1

0

max {0, q̄β(Zν(c0, c))} dβ −

−E[Zν(c0, c)].

The next result shows that as (Xν , Y ν) approximates (X, Y ), a regression vec-

tor obtained from SqRν approximates one from SqR, which provides the justification

for basing a regression analysis on SqRν . Below, we let →d denote convergence in

distribution and

Hν = h(Xν), Hν
i = hi(X

ν), i = 1, 2, ...,m.

Theorem II.3. (Stability of regression vector) Suppose that (Xν , Y ν), ν = 1, 2, ...,
and (X, Y ) are n + 1-dimensional random vectors such that (Xν , Y ν) →d (X, Y )
and that the basis function h is continuous except possibly on a subset S ⊂ IRn with
P{X ∈ S} = 0. Moreover, let Hi, Y ∈ L2, supν E[(Hν

i )2] < ∞, i = 1, 2, ...,m, and
supν E[(Y ν)2] <∞.

If {(c̄ν0, c̄ν)}∞ν=1 is a sequence of optimal solutions of SqRν, with α ∈ (0, 1),
then every accumulation point of that sequence is a regression vector of SqR.

Proof.

Let (c0, c) ∈ IRm+1 be arbitrary. By the continuous mapping theorem (see for example

Theorem 29.2 in Billingsley, 1995),

Zν(c0, c) = Y ν − c0 − 〈c, h(Xν)〉 →d Z(c0, c) = Y − c0 − 〈c, h(X)〉.

By the assumed moment conditions in (II.1), there exists a constant M < ∞ that

bounds from above the terms

max
i
E[|Hi|], max

i
E[(Hi)

2], sup
ν,i

E[|Hν
i |], sup

ν,i
E[(Hν

i )2],

and E[|Y |], E[Y 2], sup
ν
E[|Y ν |], sup

ν
E[(Y ν)2].
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In view of Lemma II.2 and its proof, we deduce that

E[(Y ν − c0−〈c,Hν〉)2] ≤M + 2(‖c‖m1/2M + (M + |c0|)‖c‖mM) + ‖c‖2mM (II.21)

for all ν. Hence, Zν(c0, c) is uniformly integrable (for fixed c0, c) and

E[Zν(c0, c)] → E[Z(c0, c)] <∞; (II.22)

see Billingsley (1995), Theorem 25.12 and its corollary.

By Theorem 4 in Rockafellar and Royset (2014b), a sequence of random vari-

ables converges in distribution to a random variable if and only if the corresponding

α-superquantiles, viewed as functions of the probability level α, converge uniformly

on every closed subset of (0, 1). Consequently, q̄β(Zν(c0, c))→ q̄β(Z(c0, c)) uniformly

in β on closed subsets of (0, 1). Moreover, since the 0-superquantile coincides with

the expectation, (II.22) implies that q̄0(Zν(c0, c)) → q̄0(Z(c0, c)) also holds. These

facts and the observation that the superquantile of any random variable is continuous

and nondecreasing as a function of the probability level, ensure that for any ε > 0

and δ ∈ (0, 1), there exists an integer ν(ε, δ) such that for all ν ≥ ν(ε, δ),

sup
β∈[0,1−δ]

|q̄β (Zν(c0, c))− q̄β (Z(c0, c))| ≤
ε

2(1− δ)
. (II.23)

Then,∣∣∣∣∫ 1−δ

0

max
{

0, q̄β(Zν(c0, c))
}
dβ −

∫ 1−δ

0

max
{

0, q̄β(Z(c0, c))
}
dβ

∣∣∣∣
≤
∫ 1−δ

0

∣∣∣q̄β(Zν(c0, c))− q̄β(Z(c0, c))
∣∣∣dβ

≤
∫ 1−δ

0

ε

2(1− δ)
dβ

≤ ε

2
(II.24)

for all ν ≥ ν(ε, δ). Following an argument similar to that in Lemma II.1, we find that∫ 1

1−δ
max{0, q̄β(Z(c0, c))}dβ ≤ δ1/2σ(Z(c0, c))

+ max
{

0, δE[Z(c0, c)]δ
1/2σ(Z(c0, c))

}
. (II.25)
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Moreover, the reasoning that leads to (II.21) also gives∣∣∣E[Z(c0, c)]
∣∣∣ ≤M + |c0|+ ‖c‖mM. (II.26)

These facts show that there exists a positive constant M̃ <∞ (which depends on c0

and c) such that |E[Z(c0, c)]|, σ(Z(c0, c)) ≤ M̃ . Hence, from (II.25), we find that∫ 1

1−δ
max

{
0, q̄β(Z(c0, c))

}
dβ ≤ 3M̃δ1/2. (II.27)

Let ε < 12M̃ and δε = (ε/(12M̃))2. Then, 3M̃δ
1/2
ε = ε/4 and∫ 1

1−δε
max

{
0, q̄β(Z(c0, c))

}
dβ ≤ ε

4
. (II.28)

An identical result holds for Zν(c0, c). Let q̄β(Zν(c0, c))+ = max{0, q̄β(Zν(c0, c))} and

q̄β(Z(c0, c))+ = max{0, q̄β(Z(c0, c))}. Consequently, for all ν ≥ ν(ε, δε),∣∣∣∣∫ 1

0

q̄β(Zν(c0, c))+dβ −
∫ 1

0

q̄β(Z(c0, c))+dβ

∣∣∣∣
≤
∣∣∣∣∫ 1−δε

0

q̄β(Zν(c0, c))+dβ −
∫ 1−δε

0

q̄β(Z(c0, c))+dβ

∣∣∣∣
+

∫ 1

1−δε
q̄β(Zν(c0, c))+dβ +

∫ 1

1−δε
q̄β(Zν(c0, c))+dβ

≤ ε

2
+
ε

4
+
ε

4

≤ ε.

The fact that E[Zν(c0, c)] → E[Z(c0, c)] < ∞ and the assumption that (c0, c) is

arbitrary, imply that Ēα(Zν(·, ·)) → Ēα(Z(·, ·)) pointwise on IRm+1. Lemma II.1 and

the above moment assumptions imply that Ēα(Zν(·, ·)) and Ēα(Z(·, ·)) are finite-valued

functions. They are also convex, which follows directly from the convexity of Ēα on L2

and the affine form of Zν and Z as functions of c0 and c. Consequently, by Theorem

7.17 in Rockafellar and Wets (1998), Ēα(Zν(·, ·)) epiconverges to Ēα(Z(·, ·)). The

result then follows from Theorem 7.31 in Rockafellar and Wets (1998).
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When the Approximate Superquantile Regression Problem SqRν is constructed

using an independent identically distributed sample of size ν from the distribution

of (X, Y ), we obtain the following corollary which follows from the properties of the

empirical distribution.

Corollary II.1. Suppose that the basis function h is continuous except possibly on a
subset S ⊂ IRn with P{X ∈ S} = 0 and that Hi, Y ∈ L2, i = 1, 2, ...,m. Moreover,
let (Xν , Y ν) be distributed according to the empirical distribution generated by an in-
dependent and identically distributed sample of size ν from the distribution of (X, Y ).
Then, the conclusion of Theorem II.3 holds.

We next examine the rate of convergence of regression vectors obtained from

the approximate problem SqRν to those of SqR corresponding to the “true” distribu-

tion. It appears difficult to obtain asymptotic distribution theory for superquantile

regression without additional assumptions, which among other consequences should

ensure unique optimal solutions of SqR. We prefer another route that leads to a rate

of convergence result under mild assumptions.

Quantification of the stability of the set of optimal solutions of an optimiza-

tion problem under perturbations depends on a “growth condition” of the problem,

which is difficult to quantify for SqR; see Section 7J in Rockafellar and Wets (1998).

Consequently, we focus on the better behaved ε-regression vectors of SqR defined for

ε > 0 as

C̄ε :=

{
(c0,ε, cε) ∈ IRm+1

∣∣∣∣Ēα(Z(c0,ε, cε)) ≤ min
c0∈IR,c∈IRm

Ēα(Z(c0, c)) + ε

}
,

with an analogous definition of the ε-regression vectors of SqRν denoted by C̄νε . The

rate with which C̄νε tends to C̄ε depends, naturally, on the rate with which (Xν , Y ν),

underlying SqRν , tends to (X, Y ) of SqR in some sense. Before we make a precise

statement, we introduce a convenient notion of distances between any two nonempty

sets A,B ⊂ IRm+1. For ρ ≥ 0, let

d̂Iρ(A,B) := inf{η ≥ 0|A ∩ ρIB ⊂ B + ηIB,B ∩ ρIB ⊂ A+ ηIB},
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where IB is the Euclidean ball in IRm+1 with unit radius and center at the origin.

Roughly, d̂Iρ(A,B) is the smallest amount the sets need to be “enlarged” to ensure

they contain the other one, with an exclusive focus on points no further from the

origin than ρ. This restriction facilitates the treatment of unbounded sets.

As we see next, the rate of convergence is directly related to the rate with

which the random vector

∆ν := (Hν −H,Y ν − Y ),

describing the approximation error, tends to zero.

Theorem II.4. (Rate of convergence of regression vector) Suppose that (Xν , Y ν),
ν = 1, 2, ..., and (X, Y ) are n + 1-dimensional random vectors generating SqRν and
SqR, respectively. Moreover, let Hi, Y ∈ L2, supν E[(Hν

i )2] <∞, i = 1, 2, ...,m, and
supν E[(Y ν)2] <∞. Let ρ0 > 0 be such that ρ0IB ∩ C̄ 6= ∅ and ρ0IB ∩ C̄ν 6= ∅.

Then, for ρ > ρ0, there exist positive constants k1, k2, and k3 (dependent on
ρ) such that for any ε > 0 and ν = 1, 2, ...,

d̂Iρ(C̄νε , C̄ε) ≤
(

1 +
4ρ

ε

)[
E[‖∆ν‖]

(
k1 max

{
0, log

(
1

E[‖∆ν‖]

)}
+ k2

)
+ k3‖E[∆ν ]‖

]
whenever E[‖∆ν‖] > 0 and d̂Iρ(C̄νε , C̄ε) = 0 otherwise.

Proof.

By Theorem 3(a) of Rockafellar and Royset (2014b), for β ∈ [0, 1),∣∣∣q̄β(Zν(c0, c))− q̄β(Z(c0, c))
∣∣∣ ≤ 1

1− β
E[|Zν(c0, c)− Z(c0, c)|],

and since

1

1− β
E[|Zν(c0, c)− Z(c0, c)|] =

1

1− β
E[|〈c̃,∆ν〉|],

we get that∣∣∣q̄β(Zν(c0, c))− q̄β(Z(c0, c))
∣∣∣ ≤ 1

1− β
E[|〈c̃,∆ν〉|]

≤ 1

1− β
‖c̃‖E[‖∆ν‖], (II.29)
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where c̃ = (−c, 1). Then, for δ ∈ (0, 1),∣∣∣∣∫ 1−δ

0

max{0, q̄β(Zν(c0, c))}dβ −
∫ 1−δ

0

max{0, q̄β(Z(c0, c))}dβ
∣∣∣∣

≤
∫ 1−δ

0

|q̄β(Zν(c0, c))− q̄β(Z(c0, c))| dβ

≤ ‖c̃‖E[‖∆ν‖]
∫ 1−δ

0

1

1− β
dβ

≤ −‖c̃‖E[‖∆ν‖] log δ. (II.30)

Let ρ > ρ0 and M be an upper bound on first and second moments of |Hi|, |Hν
i |, |Y |,

and |Y ν | as in the proof of Theorem II.3. Since |〈c,H〉| ≤ ‖c‖
∑m

i=1 |Hi| and 〈c,H〉2 ≤

‖c‖2
∑m

i=1(Hi)
2, we find that E[|〈c,H〉|] ≤ ‖c‖mM and E[〈c,H〉2] ≤ ‖c‖2mM . Con-

sequently,

E[(Y − c0 − 〈c,H〉)2] ≤ E[(Y − c0)2] + 2|E[(Y − c0)〈c,H〉]|+ E[〈c,H〉2]

≤ M + 2(‖c‖m1/2M + (M + |c0|)‖c‖mM) + ‖c‖2mM.

(II.31)

Then, for ‖(c0, c)‖ ≤ ρ, it follows by (II.26) that

|E[Z(c0, c)]| ≤M + ρ+ ρmM

and by (II.31) that

σ(Z(c0, c)) ≤
(
M + 2

(
ρm1/2M + (M + ρ)ρmM

)
+ ρ2mM

)1/2

,

with identical bounds for |E[Zν(c0, c)]| and σ(Zν(c0, c)). Let Mρ be the larger of the

two previous right-hand sides.

By (II.25), analogously to (II.27), we have that for ‖(c0, c)‖ ≤ ρ,∫ 1

1−δ
max{0, q̄β(Z(c0, c))}dβ ≤ 3Mρδ

1/2 (II.32)

and similarly with Z(c0, c) replaced by Zν(c0, c).
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We also find that for ‖(c0, c)‖ ≤ ρ,∣∣∣E[Zν(c0, c)]− E[Z(c0, c)]
∣∣∣ =

∣∣∣〈c̃, E[∆ν ]〉
∣∣∣

≤ ‖c̃‖‖E[∆ν ]‖

≤ (1 + ρ)‖E[∆ν ]‖. (II.33)

Then, collecting the results of (II.30), (II.32), and (II.33), and for ‖(c0, c)‖ ≤ ρ,

we obtain∣∣∣Ēα(Zν(c0, c))− Ēα(Z(c0, c))
∣∣∣

≤
∣∣∣∣∫ 1

0

max{0, q̄β(Zν(c0, c))}dβ −
∫ 1

0

max{0, q̄β(Z(c0, c))}dβ
∣∣∣∣

+
∣∣∣E[Zν(c0, c)]− E[Z(c0, c)]

∣∣∣
≤
∣∣∣∣∫ 1−δ

0

max{0, q̄β(Zν(c0, c))}dβ −
∫ 1−δ

0

max{0, q̄β(Z(c0, c))}dβ
∣∣∣∣

+

∫ 1

1−δ
max{0, q̄β(Zν(c0, c))}dβ +

∫ 1

1−δ
max{0, q̄β(Z(c0, c))}dβ

+
∣∣∣E[Zν(c0, c)]− E[Z(c0, c)]

∣∣∣
≤ −(1 + ρ)E[‖∆ν‖] log δ + 6Mρδ

1/2 + (1 + ρ)‖E[∆ν ]‖. (II.34)

We next determine the choice of δ ∈ (0, 1) that minimizes the previous bound and

consider two cases. First, if

0 < kρ (E[‖∆ν‖])2 < 1,

with

kρ :=

(
2(1 + ρ)

6Mρ

)2

,

then differentiation gives that the bound is minimized with δ = kρ(E[‖∆ν‖])2. Second,

if

kρ (E[‖∆ν‖])2 ≥ 1,

then

Mρ ≤
4(1 + ρ)E[‖∆ν‖]

6
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and the bound

− (1 + ρ)E[‖∆ν‖] log δ + 6Mρδ
1/2 + (1 + ρ)‖E[∆ν ]‖

≤ −(1 + ρ)E[‖∆ν‖] log δ + 4(1 + ρ)E[‖∆ν‖]δ1/2 + (1 + ρ)‖E[∆ν ]‖,

for any δ ∈ (0, 1). Consequently, combining the two cases, there exist constants k1,

k2, and k3 (which depend on ρ), such that for ‖(c0, c)‖ ≤ ρ,∣∣∣Ēα(Zν(c0, c))− Ēα(Z(c0, c))
∣∣∣

≤ k1E[‖∆ν‖] max

{
0, log

(
1

E[‖∆ν‖]

)}
+ k2E[‖∆ν‖] + k3‖E[∆ν ]‖

≤ E[‖∆ν‖]
(
k1 max

{
0, log

(
1

E[‖∆ν‖]

)}
+ k2

)
+ k3‖E[∆ν ]‖.

Direct application of Example 7.62 and Theorem 7.69 of Rockafellar and Wets (1998)

then yields the conclusion for E[‖∆ν‖] > 0, where the additional coefficient (1+4ρ/ε)

originates in that theorem. Finally, if E[‖∆ν‖] = 0, then, in view of (II.29) and the

fact that this implies that ‖E[∆ν ]‖ = 0, we find that for ‖(c0, c)‖ ≤ ρ,

∣∣Ēα(Zν(c0, c))− Ēα(Z(c0, c))
∣∣ = 0.

The final conclusion then follows by again invoking Example 7.62 and Theorem 7.69

of Rockafellar and Wets (1998).

Theorem II.4 shows that the distance between C̄νε and C̄ε is almost proportional

to E[‖∆ν‖], but with a minor correction by a logarithmic term. If the approximation

(Xν , Y ν) is caused by measurement errors of magnitude 1/ν, i.e., the absolute value

of each component of (Xν − X, Y ν − Y ) is no greater than 1/ν almost surely, then

E[‖∆ν‖] ≤
√
m+ 1/ν and the expressions can be simplified. For ξ > 0, log x ≤ xξ

for sufficiently large x ∈ IR. Consequently, for any ξ ∈ (0, 1) and sufficiently large ν,

d̂Iρ(C̄νε , C̄ε) ≤
(

1 +
4ρ

ε

)
k

ν1−ξ ,
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where k > 0 can be determined from k1, k2, k3, and m. That is, the Euclidean

distance between an ε-regression vector of SqRν to one of SqR is O(νξ−1) for ξ ∈ (0, 1)

arbitrarily close to zero.

2. Superquantile Tracking

We next turn to the situation where the primary concern is with the conditional

loss Y (x) given that the explanatory random variable takes on specific values, X = x.

We seek to estimate q̄α(Y (x)) for x ∈ IRn, or a subset thereof, with the goal of

eventually minimizing, at least approximately, q̄α(Y (x)) by a judicious choice of x.

Of course, with incomplete knowledge about the distributions of Y (x) this is a difficult

task that can be achieved only approximately. For example, there is no guarantee

that a regression function f = c̄0 + 〈c̄, h(·)〉, with (c̄0, c̄) ∈ C̄ obtained by solving SqR

using α ∈ (0, 1), tracks q̄α(Y (x)), i.e., f(x) = q̄α(Y (x)) for all x ∈ IRn. The hope

of such “exact” superquantile tracking becomes even less realistic when SqR must

be replaced by an approximation SqRν as typically required in practice. However,

“local” superquantile tracking is possible, at least approximately, as stated in the

next proposition. Moreover, tracking is achieved under certain model assumptions.

For example, if we have that Y = c̄0 + 〈c̄, X〉+ ε, for some c̄0 ∈ IR, c̄ ∈ IRn, and where

ε is independent of X, then superquantile tracking is guaranteed; see Theorem 5.1 in

Rockafellar and Royset (2014a).

Here we consider the situation where there is a sample of Y (x) for some values

of x, but this sample is not large enough to allow pointwise estimation of q̄α(Y (x))

for every x of interest. There may even be no x for which there are multiple sample

points of Y (x). Concentrating on a particular x̂ ∈ IRn, we hope to estimate q̄α(Y (x̂))

by using samples from Y (x) for x near x̂, weighted appropriately. The weights should

be nonnegative, sum to one, and can be thought of as an artificially constructed

probability distribution associated with the sample. Specifically, suppose that xi, i =

1, ..., ν, are the points where the sample is observed and yi, i = 1, ..., ν, are the

corresponding realizations of Y (xi). When estimating a superquantile at x̂, we put
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more “trust” on sample points taken near x̂ and consequently the weight of (xi, yi) may

be inversely proportional to ‖xi − x̂‖, with an appropriate adjustment if x̂ coincides

with an xi.

A justification for the approach follows directly from Theorem II.3 through

the next proposition.

Proposition II.5. Suppose that the assumptions of Theorem II.3 hold and that
the probability distribution of (X, Y ) is degenerate at x̂ ∈ IRn+1 in the sense that
P{(X, Y ) ≤ (x, y)} = ϕ(y), for all y ∈ IR and x ≥ x̂, where ϕ(y) = P{Y (x̂) ≤ y},
and P{(X, Y ) ≤ (x, y)} = 0 otherwise.

If {(c̄ν0, c̄ν)}∞ν=1 is a sequence of optimal solutions of SqRν, with α ∈ (0, 1), then
along every convergent subsequence we have that c̄ν0 + 〈c̄ν , h(x̂)〉 tends to q̄α(Y (x̂)).

Proof.

For the given degenerate distribution of (X, Y ), c0 + 〈c, h(X)〉 = c0 + 〈c, h(x̂)〉 almost

surely. Consequently, SqR reduces to the error minimization problem of Theorem

II.1 and c̄0 + 〈c̄, h(x̂)〉 = q̄α(Y (x̂)) for every (c̄0, c̄) ∈ C̄. The conclusion then follows

from Theorem II.3.

Suppose that the weights of (xi, yi), i = 1, 2, ..., ν, in the above construction

are chosen to approximate the degenerate distribution of Proposition II.5, for example

by setting them inversely proportional to ‖xi− x̂‖. Then, in view of Proposition II.5,

a solution of SqRν , constructed using those weights as an artificial probability distri-

bution for (Xν , Y ν), leads to an approximation of the considered superquantile at x̂.

Of course, this procedure can be repeated for different points x̂ to generate a “global”

assessment of q̄α(Y (x)) as a function of x and eventually facilitate optimization over

x. Moreover, the process can be repeated with new or augmented sample points in

a straightforward manner. In a situation where a sample is not fully randomly gen-

erated but x-points are determined by an analyst, the approach may even motivate

scattering those points near a point of interest x̂ instead of concentrating them all at

x̂ exactly. The former approach certainly results in a better “global” understanding
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of a superquantile as a function of x, but may prove to be a more economical route to

estimate a superquantile at x̂ too. We examine this situation numerically in Chapter

IV.

C. VALIDATION ANALYSIS

Regression modeling must be associated with means of assessing the goodness

of fit of a computed regression vector. The process of validating a regression fit is

important as it allows us to decide whether the obtained numerical results quantify

how well the model explains and predicts future outcomes. A commonly used mea-

sure that allows such assessment is the coefficient of determination. In least squares

regression, this coefficient, also known as R-squared, is defined as

R2 = 1− SSRes

SST

,

where SSRes denotes the residual sum of squares and SST the total sum of squares.

While R2 cannot be relied on exclusively, it provides an indication of the goodness of

fit that is easily extended to the present context of superquantile regression. In our

notation,

R2 = 1− E[Z(c0, c)
2]

σ2(Y )
, (II.35)

and similarly when passing to an approximate random vector (Xν , Y ν). From Ex-

ample 1’ in Rockafellar and Uryasev (2013), we know that the numerator in (II.35)

is a measure of error applied to Z(c0, c) and that its denominator corresponds to

the measure of deviation σ2(·). Moreover, the minimization of that error of Z(c0, c)

results in the least squares regression vector. According to Rockafellar and Uryasev

(2013), these measures of error and deviation are in correspondence and belong to a

family of risk quadrangles that yields the expectation as its statistic. Therefore we

could write the formula for R2 as follows

R2 = 1− E(Z(c0, c))

D(Y )
. (II.36)
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This observation motivates the following definition of coefficient of determination

applied to quantile regression.

Definition II.1. In quantile regression, the coefficient of determination of a regres-
sion vector (c0, c) ∈ IRm+1 is given by

R2
α(c0, c) := 1− Eα(Z(c0, c))

Dα(Y )

= 1−
E
[

α
1−αZ(c0, c)+ + Z(c0, c)−

]
q̄α(Y )− E[Y ]

, (II.37)

where Z(c0, c)+ = max{0, Z(c0, c)} and Z(c0, c)− = max{0,−Z(c0, c)}.

In least squares regression, the coefficient of determination is a value expressed

between zero and one, which leads us to the following proposition.

Proposition II.6. For a regression vector (c0, c) ∈ IRm+1 and α ∈ (0, 1), one has
that

0 ≤ R2
α(c0, c) ≤ 1. (II.38)

Proof.

By the definition of coefficient of determination in quantile regression and of quantile

error and deviation measures, in the sense of Rockafellar and Uryasev (2013), we have

that

R2
α(c0, c) = 1− Eα(Z(c0, c))

Dα(Y )

= 1− Eα(Y − c0 − 〈c, h(X)〉)
min
ξ∈IR

Eα(Y − ξ)

= 1− Eα(Y − c0 − 〈c, h(X)〉)
Eα(Y − ξ∗)

, (II.39)

where ξ∗ is an optimal solution to minξ∈IR Eα(Y − ξ). Both quantile error and

deviation measures are nonnegative quantities, which proves the upper bound. Since

the regression vector (c0, c) ∈ IRm+1 is obtained by

min
(c0,c)∈IRm+1

Eα (Y − c0 − 〈c, h(X)〉) ,
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we guarantee that

Eα(Y − c0 − 〈c, h(X)〉) ≤ Eα(Y − ξ∗),

in equation (II.39), which gives R2
α(c0, c) ≥ 0.

Applying the same idea to superquantile regression, we obtain the following

definition of the coefficient of determination.

Definition II.2. In superquantile regression, the coefficient of determination of a
regression vector (c0, c) ∈ IRm+1 is given by

R̄2
α(c0, c) := 1− Ēα(Z(c0, c))

D̄α(Y )

= 1−
1

1−α

∫ 1

0
max {0, q̄β(Z(c0, c))} dβ − E [Z(c0, c)]

1
1−α

∫ 1

α
q̄β(Y )dβ − E[Y ]

. (II.40)

In fact, a similar definition can be formulated for any generalized regression

consisting of minimizing an error of Zf .

The bounds on the coefficients of determination for least squares and quantile

regressions, can also be applied to the coefficient of determination in the superquantile

regression case, using the same arguments as in the previous proof.

Proposition II.7. For a regression vector (c0, c) ∈ IRm+1 and α ∈ (0, 1), one has
that

0 ≤ R̄2
α(c0, c) ≤ 1. (II.41)

Proof.

By the definition of coefficient of determination in superquantile regression and of

superquantile error and deviation measures, in the sense of Rockafellar and Uryasev
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(2013), we have that

R̄2
α(c0, c) = 1− Ēα(Z(c0, c))

D̄α(Y )

= 1− Ēα(Y − c0 − 〈c, h(X)〉)
min
ξ∈IR

Ēα(Y − ξ)

= 1− Ēα(Y − c0 − 〈c, h(X)〉)
Ēα(Y − ξ∗)

, (II.42)

where ξ∗ is an optimal solution to minξ∈IR Ēα(Y − ξ). Using the same arguments as

in the proof of Proposition II.6, we arrive at the conclusion.

As in the classical case, higher values of R̄2
α are better, at least in some sense.

Indeed, SqR aims to minimize the error of Z(c0, c) by wisely selecting the regression

vector (c0, c) and thereby also maximizes R̄2
α,

argmin
c0,c

Ēα (Y − [c0 + 〈c, h(X)〉])⇔ argmax
c0,c

R̄2
α(c0, c). (II.43)

The error is “normalized” with the overall “nonconstancy” in Y as measured by its

measure of deviation to more easily allow for comparison of coefficients of determina-

tion across data sets.

However it is possible to obtain large coefficients of determination by adding

explanatory terms to a regression model, i.e., increasing m, but without necessarily

achieving a more useful model. Hence, it is usual in least squares regression to also

evaluate an adjusted coefficient of determination that penalizes any term added to

the model that does not reduce variability substantially. This quantity only increases

if a new term reduces SSRes/(ν −m− 1) as seen by the definition

R2
Adj = 1− SSRes/(ν −m− 1)

SST/(ν − 1)
, (II.44)

where ν is the number of observations. Naturally, then, we define an adjusted coeffi-

cient of determination for quantile and superquantile regressions similarly in the case

where the distribution of (X, Y ) has a finite support of cardinality ν.
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Definition II.3. In quantile regression, the adjusted coefficient of determination of
a regression vector (c0, c) ∈ IRm+1 is given by

R2
α,Adj(c0, c) := 1− Eα(Z(c0, c))/(ν −m− 1)

Dα(Y )/(ν − 1)
. (II.45)

Definition II.4. In superquantile regression, the adjusted coefficient of determina-
tion of a regression vector (c0, c) ∈ IRm+1 is given by

R̄2
α,Adj(c0, c) := 1− Ēα(Z(c0, c))/(ν −m− 1)

D̄α(Y )/(ν − 1)
. (II.46)

Again, similar expressions are available for other generalized regression techniques.

When performing least squares regression analysis, we have other commonly

used validation methods. These include computing the Cook’s distance for each

observation used in the model, which provides an estimate on how an observation

influences the obtained regression fit. This distance allows the decision maker to

easily understand which observation might be considered an outlier and which should

be checked for validity. In least squares regression, the Cook’s distance for observation

i is defined as

Di =

(
f(X)− f (i)(X)

)2

mMSE
=

(
f(X)− f (i)(X)

)2

m (f(X)− Y )2 , (II.47)

where f (i)(·) represents the fitted regression function without observation i, and MSE

denotes the mean square error of the regression model. Using the measure of error

that is corresponding to the expectation as the statistic, and similar to the approach

in (II.36), we could write the formula for the Cook’s distance in (II.47) for observation

i as follows

Di :=
E(f(X)− f (i)(X))

m E(f(X)− Y )
. (II.48)

With this in mind, we next define Cook’s distances applied to quantile and superquan-

tile regressions.
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Definition II.5. In quantile regression, the Cook’s distance estimates for a regression
vector (c0, c) ∈ IRm+1 is given by

Di,α(c0, c) :=
Eα(f(X)− f (i)(X))

m Eα(f(X)− Y )

=
E
[

α
1−α{f(X)− f (i)(X)}+ + {f(X)− f (i)(X)}−

]
mE

[
α

1−α{f(X)− Y }+ + {f(X)− Y }−
] , (II.49)

where Y+ = max{0, Y } and Y− = max{0,−Y }.

Definition II.6. In superquantile regression, the Cook’s distance estimates for a
regression vector (c0, c) ∈ IRm+1 is given by

D̄i,α(c0, c) :=
Ēα(f(X)− f (i)(X))

m Ēα(−Z(c0, c))

=
1

1−α

∫ 1

0
max{0, q̄α(f(X)− f (i)(X))}dβ − E[f(X)− f (i)(X)]

m 1
1−α

∫ 1

0
max{0, q̄α(−Z(c0, c))}dβ + E[Z(c0, c)]

.

(II.50)

As shown in Section II.B, we only use one assumption when building our

superquantile regression problem, finite second moments for the random variables.

This generalization allows the regression problem to be applied in many situations,

but makes validating the obtained model a harder process.

For the scope of the dissertation we do not develop other model validation

techniques since we discard many of the commonly used model assumptions, such

as normality, or homoscedasticity, that are usually requirements for such assessment

tests. However, we recall that cross-validation is a tool to take into account for

validating the regression model, especially for larger sample sizes ν. Obviously, when

the sample size is small and we choose a high probability level α, subdividing the

sample into training and testing data sets is not a wise decision.

In the next chapter, we develop computational methods that allow us to im-

plement these theoretical results.
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III. COMPUTATIONAL METHODS

In this chapter, we develop computational methods that allow us to solve the

superquantile regression problems of Section II.B. This computational task consists of

solving the convex optimization problem SqR, or in practice the approximate problem

SqRν due to incomplete distributional information.

In the next two sections, we describe convenient means for solving the su-

perquantile regression problems when (Xν , Y ν) has a discrete joint distribution with

ν possible realizations. Regardless of the distribution of (Xν , Y ν), a reformulation of

the approximate problem SqRν in terms of the deviation measure D̄α is beneficial. In

view of Proposition II.3, the task of determining a regression vector (c̄ν0, c̄
ν) reduces to

that of minimizing D̄α(Zν
0 (·)), obtaining c̄ν as an optimal solution, and then setting

c̄ν0 = q̄α(Zν
0 (c̄ν)).

Since it is straightforward to compute every superquantile of a random variable

Y with a discrete probability distribution, as follows

q̄α(Y ) =



ν∑
j=1

pjyj if α = 0,

1
1−α

[(
i∑

j=1

pi − α

)
yi +

ν∑
j=i+1

pjyj

]
if

i−1∑
j=1

pj < α ≤
i∑

j=1

pj < 1,

yν if α > 1− pν ,

with pj being the corresponding probabilities of the realizations yj of Y , which are

ordered from smaller to larger, we only focus on the minimization problem, which

takes the following form:

Problem:

DSqRν : min
c∈IRm

D̄α (Zν
0 (c)) =

1

1− α

∫ 1

α

q̄β(Zν
0 (c))dβ − E[Zν

0 (c)]
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We denote these computational methods by primal methods since we compute

the regression vectors solving the original problem. The material in Section III.A is

to a large extend based on our paper Rockafellar et al. (2014).

In Section III.B, we use a different approach that relies on the dualization of

risk and using the theory developed in Rockafellar and Royset (2014c), we generate

a computational method that we denote as the dual method.

A. PRIMAL METHODS

The next subsections describe two primal computational methods for solving

DSqRν . The first one solves our problem by analytical integration, while the second

one utilizes numerical integration techniques.

1. Analytical Integration

At first one might get the impression that numerical integration is required

for solving DSqRν , but this may not actually be needed as we show next. Suppose

that (Xν , Y ν) has a discrete distribution with support (xj, yj), j = 1, 2, ..., ν and

probability of occurring P{(Xν , Y ν) = (xj, yj)} = 1/ν for j = 1, 2, ..., ν. This is the

case we typically encounter in applications, where (xj, yj), j = 1, 2, ..., ν, is the data

assumed to be equally likely to occur. We then obtain significant simplifications in

the approximate regression problem DSqRν .

For any fixed c ∈ IRm, the cumulative distribution function of Zν
0 (c) is a

piecewise constant function with at most ν steps. The range of the distribution

function is {0, 1/ν, 2/ν, ..., 1} or a subset thereof. By partitioning the integral over β

in DSqRν according to this range, and accounting for the fact that the integral starts

at α, we can then rewrite the optimization problem in this case as

min
c∈IRm

1

1− α

ν∑
i=να

∫ βi

βi−1

q̄β(Zν
0 (c))dβ − E[Zν

0 (c)], (III.1)

where να := dναe, with dae being the smallest integer no smaller than a ∈ IR,

βνα−1 = α, and βi = i/ν, for i = να, να + 1, ..., ν.
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We recall that

qα(Y ) ∈ argmin
c0∈IR

{c0 + Vα(Y − c0)}

q̄α(Y ) = min
c0∈IR
{c0 + Vα(Y − c0)} .

Consequently,

q̄β(Zν
0 (c)) = min

Uβ∈IR
Uβ +

1

1− β
E[max{Zν

0 (c)− Uβ, 0}] (III.2)

= qβ(Zν
0 (c)) +

1

1− β
E[max{Zν

0 (c)− qβ(Zν
0 (c)), 0}]

for each β ∈ [0, 1).

The special piecewise-constant structure of the cumulative distribution func-

tion of Zν
0 (c) implies that qβ(Zν

0 (c)) is constant as a function of β on the intervals

(βi−1, βi), for every i = να, να + 1, ..., ν. Consequently, Uβ, for β ∈ (α, 1) in equation

(III.2) can be replaced by a finite number of variables so that equation (III.1) takes

the form

min
c∈IRm

1

1− α

ν∑
i=να

∫ βi

βi−1

min
Ui∈IR

(
Ui +

1

1− β
E[max{Zν

0 (c)− Ui, 0}]
)
dβ − E[Zν

0 (c)].

The last integral simplifies further since for β ∈ (βν−1, βν) = (1 − 1/ν, 1), we have

that

q̄β(Zν
0 (c)) = M(c) := max

j=1,2,...,ν
yj − 〈c, xj〉,

and therefore

1

1− α

∫ βν

βν−1

min
Uν∈IR

(
Uν +

1

1− β
E[max{Zν

0 (c)− Uν , 0}]
)
dβ

=
1

1− α
M(c)

∫ βν

βν−1

dβ =
M(c)

ν(1− α)
.

Consequently, equation (III.1) takes the form

min
c∈IRm

1

1− α

ν−1∑
i=να

∫ βi

βi−1

min
Ui∈IR

(
Ui +

1

1− β
E[max{Zν

0 (c)− Ui, 0}]
)
dβ

+
M(c)

ν(1− α)
− E[Zν

0 (c)].
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The order of minimization is immaterial and we can equivalently consider

min
c∈IRm, U∈IRν−να

1

1− α

ν−1∑
i=να

∫ βi

βi−1

(
Ui +

1

1− β
E[max{Zν

0 (c)− Ui, 0}]
)
dβ

+
M(c)

ν(1− α)
− E[Zν

0 (c)],

where we let U = (Uνα , Uνα+1, ..., Uν−1) ∈ IRν−να .

In order to simplify the notation in our minimization problem, we define ai,

for i = να, να + 1, ..., ν − 1, as follows

ai :=

∫ βi

βi−1

1

1− β
dβ = log(1− βi−1)− log(1− βi).

Using this notation, equation (III.1) simplifies even further to

min
c∈IRm, U∈IRν−να

1

1− α

ν−1∑
i=να

(βi − βi−1)Ui +
1

1− α

ν−1∑
i=να

E[max{Zν
0 (c)− Ui, 0}]ai

+
M(c)

ν(1− α)
− E[Zν

0 (c)].

By introducing another set of auxiliary variables and using the standard transcrip-

tion technique for handling max-functions, we reach the linear program P ν
LP that

implements analytical integration.
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Problem:

P ν
LP : min

c,u,v,w

1

1− α

ν−1∑
i=να

(βi − βi−1)ui +
1

ν(1− α)

ν−1∑
i=να

ν∑
j=1

aivij

+
w

ν(1− α)
− 1

ν

ν∑
j=1

(yj − 〈c, h(xj)〉)

s.t. yj − 〈c, h(xj)〉 − ui ≤ vij, i = να, . . . , ν − 1 , j = 1, . . . , ν

0 ≤ vij, i = να, . . . , ν − 1 , j = 1, . . . , ν

yj − 〈c, h(xj)〉 ≤ w, j = 1, . . . , ν

c ∈ IRm

u = (uνα , . . . , uν−1) ∈ IRν−να

v = (vνα,1, . . . , vν−1,ν) ∈ IR(ν−να)ν

w ∈ IR.

This equivalent reformulation of DSqRν involves m + (ν − να)(ν + 1) + 1

variables and 2(ν − να)ν + ν inequality constraints. In practice, with the probability

level α being set close to 1, να = dναe may be close to the number of observations ν.

Consequently, the linear programming problem P ν
LP becomes large-scaled when the

sample size ν is large and decomposition algorithms may be needed.

Alternatively, we consider next a numerical integration-based scheme that

avoids some auxiliary variables and constraints, and also handles the situation where

the distribution of (Xν , Y ν) is not uniformly discrete.

2. Numerical Integration

The integral in DSqRν is easily approximated using standard numerical in-

tegration techniques. Suppose that the interval [α, 1] is divided into µ subintervals,

where α ≤ β0 < β1 < . . . < βµ−1 < βµ ≤ 1 and wi ≥ 0, i = 0, 1, ..., µ, are factors

specific to the integration scheme. An approximation of DSqRν then takes the form
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Problem:

P ν,µ,w
Num : min

c∈IRm
1

1− α

µ∑
i=0

wiq̄βi(Z
ν
0 (c)) − E [Zν

0 (c)] .

For large µ, an optimal solution of problem P ν,µ,w
Num is close to that of DSqRν ,

as seen next, under conditions that are satisfied by essentially all commonly used

numerical integration schemes.

Proposition III.1. Suppose that for any continuous function g : [α, 1] → IR, a
numerical integration scheme with discretization points α ≤ β0 < β1 < . . . < βµ−1 <
βµ ≤ 1 and weights wi ≥ 0, i = 0, 1, ..., µ, satisfies∣∣∣∣∣

µ∑
i=0

wig(βi)−
∫ 1

α

g(β)dβ

∣∣∣∣∣→ 0

as µ → ∞. Let {c̄ν,µ}∞µ=1 be a sequence of optimal solutions of P ν,µ,w
Num under this

numerical integration scheme. Then, every accumulation point of {c̄ν,µ}∞µ=1 is an
optimal solution of DSqRν.

Proof:

For any c ∈ IRm, q̄β(Zν
0 (c)) is finite and continuous as a function of β. Consequently,

the assumption on the numerical integration scheme applies and the objective function

of P ν,µ,w
Num converges pointwise to that of DSqRν , as µ→∞.

The objective functions are also finite and convex in c, which follows directly

from the convexity of q̄α on L2 and the affine form of Zν
0 as a function of c. Conse-

quently, by Theorem 7.17 in Rockafellar and Wets (1998), the objective function of

P ν,µ,w
Num epiconverges to that of DSqRν and the conclusion follows from Theorem 7.31

in Rockafellar and Wets (1998).

While specialized solvers, such as Portfolio Safeguard in American Optimal

Decisions, Inc. (2011), handle P ν,µ,w
Num directly with little difficulty under many circum-

stances, the problem is typically nonsmooth and standard nonlinear programming
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solvers may fail. However, following a simple reformulation of P ν,µ,w
Num , utilizing equa-

tion (II.7), we obtain the equivalent linear program formally stated below, where we

assume for convenience that βµ < 1.

Problem:

P ν,µ,w
Num,LP :

min
c,u,v

1

1− α

µ∑
i=0

wi

(
ui +

1

1− βi

ν∑
j=1

pjvij

)
−

ν∑
j=1

pj(yj − 〈c, h(xj)〉)

s.t. yj − 〈c, h(xj)〉 − ui ≤ vij, i = 0, 1, ..., µ , j = 1, ..., ν

0 ≤ vij, i = 0, 1, ..., µ , j = 1, ..., ν

c ∈ IRm

u = (u0, u1, ..., uµ) ∈ IRµ+1

v = (v0,1, ..., vµ,ν) ∈ IR(µ+1)ν

If βµ = 1, then a straightforward modification is required based on the fact that

q̄1(Zν
0 (c)) = maxj=1,2,...,ν y

j−〈c, xj〉. This linear program consists of m+µ+1+ν(µ+1)

variables and 2ν(µ+1) constraints, which may be substantially less than what follows

from the analytical integration approach for large ν. Here we assume that the weights

wi ≥ 0, i = 0, 1, ..., µ, are given and therefore not accounted for in the complexity

analysis results. For example, in Chapter IV we assume that the µ + 1 subintervals

have the same weights. And in practice, we find that a moderately large µ suffices as

shown in the numerical examples discussed in the same chapter.

B. DUAL METHODS

We now turn to a distinct perspective towards the alternative superquantile

regression problem DSqR. We use the theory of the dualization of risk to build a
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dual problem as described in the next subsection. We then solve this new problem

using different algorithms, as seen in Subsections III.B.2 through III.B.4.

1. Dualization of Risk

We start this subsection by recalling the risk measure R̄α corresponding to the

superquantile as the statistic. According to equation (II.18), the measure of deviation

for our superquantile-based quadrangle is described as follows

D̄α(Y ) = R̄α(Y )− E [Y ] =
1

1− α

∫ 1

α

q̄β(Y )dβ − E [Y ] = ¯̄qα(Y )− E [Y ] , (III.3)

where R̄α(Y ) = ¯̄qα(Y ) is the risk measure for which we build the dual.

Next we turn to the dualization of risk measures and derive results that we

can apply to our deviation-based superquantile regression problem DSqR. By the

Envelope Theorem in Rockafellar and Uryasev (2013), an alternative formula for a

positively homogeneous regular risk measure R(·) is given by its dual representation,

described as follows

R(Y ) = sup
Q∈Q
{E [Y Q]}, (III.4)

where Q is a nonempty closed convex set that is to the risk envelope associated with

R. For Y ∈ L2 and α ∈ (0, 1), a QY that maximizes

sup
Q∈Q
{E [Y Q]}

is called a risk identifier. If QY is a risk identifier, then obviously

R(Y ) = E[Y QY ]. (III.5)

Clearly, when we have a risk measure R(Y ) = E[Y ], we get Q ≡ 1. And for R(Y ) =

supY , we obtain Q ∈ {Q ∈ L2 | Q ≥ 0, E[Q] = 1}.

For the general treatment of risk identifiers, we refer to Rockafellar and Royset

(2014c). We consider the case where Ω is finite and P ({ω}) > 0, for ω ∈ Ω, to avoid

technical issues regarding measurability. We let Ωβ(Y ) = {ω ∈ Ω | Y (ω) = qβ(Y )}, for

58



β ∈ (0, 1), and F−Y (y) denote the left-continuous point of the cumulative distribution

function FY .

Below we derive a risk identifier formula for the superquantile at Y and prob-

ability level β ∈ (0, 1).

Proposition III.2. (Rockafellar & Royset, 2014c) For β ∈ (0, 1) and Y ∈ L2, a risk
identifier for q̄β(Y ) is given by

QY
β (ω) =



1
1−β if Y (ω) > qβ(Y ),

rβ(ω) if Y (ω) = qβ(Y ),

0 otherwise,

with 0 ≤ rβ(ω) ≤ 1/(1− β) for ω ∈ Ω such that∫
Ωβ(Y )

rβ(ω)dP (ω) =
FY (qβ(Y ))− β

1− β
. (III.6)

We now turn to the risk identifier for our choice of measure of risk in problem

DSqR, the α-second-order superquantile. We interpret 0 times −∞ as zero. Let Q̄Y
α

be a risk identifier for ¯̄qα (Y ).

Proposition III.3. (Rockafellar & Royset, 2014c) Suppose that Y has a discrete
distribution with ν possible realizations. Then, for α ∈ (0, 1) and Y ∈ L2, a risk
identifier of ¯̄qα(Y ), is given by

59



Q̄Y
α (ω) =



1
1−α log 1−α

1−FY (Y (ω))
if α < F−Y (Y (ω)) = FY (Y (ω)) < 1

1
1−α

[
log 1−α

1−F−
Y (Y (ω))

+ 1
]

if α < F−Y (Y (ω)) < FY (Y (ω)) = 1

1
1−α

[
log 1−α

1−F−
Y (Y (ω))

+ 1

+ 1−FY (Y (ω))

FY (Y (ω))−F−
Y (Y (ω))

log 1−FY (Y (ω))

1−F−
Y (Y (ω))

] if α < F−Y (Y (ω)) < FY (Y (ω))

1
1−α

[
FY (Y (ω))−α

FY (Y (ω))−F−
Y (Y (ω))

]
if F−Y (Y (ω)) < α < FY (Y (ω)) = 1

1
1−α

[
FY (Y (ω))−α

FY (Y (ω))−F−
Y (Y (ω))

+ 1−FY (Y (ω))

FY (Y (ω))−F−
Y (Y (ω))

log 1−FY (Y (ω))
1−α ] if F−Y (Y (ω)) ≤ α ≤ FY (Y (ω))

and F−Y (Y (ω)) < FY (Y (ω))

0 otherwise.

In view of Theorem 4.13 in Rockafellar and Royset (2014c), and equations

(III.3) and (III.4), we are now able to build a dual method to solve the Deviation-

based Superquantile Regression Problem DSqR.

Consider the risk identifier Q̄
Z0(c)
α of ¯̄qα(Z0(c)), as defined in Proposition III.3,

for a probability level α ∈ (0, 1). Then, according to equation (III.3), we have that

D̄α(Z0(c)) = R̄α(Z0(c))− E [Z0(c)]

= ¯̄qα(Z0(c))− E [Z0(c)]

= E[Z0(c)Q̄Z0(c)
α ]− E [Z0(c)] . (III.7)

And we are able to define the objective function of this new problem as follows

f(c) =
1

ν

ν∑
i=1

Z0(c)(i)Q̄Z0(c)
α (i)− 1

ν

ν∑
j=1

Z0(c)j (III.8)

=
1

ν

ν∑
i=1

(
y(i) − 〈c, h(x(i))〉

)
Q̄Z0(c)
α (i)− 1

ν

ν∑
j=1

(
yj − 〈c, h(xj)〉

)
.

where Z0(c)(i) is the ith-ordered value of Z0(c). The evaluation of the objective func-

tion requires the computation of Q̄
Z0(c)
α . According to Proposition III.3, this implies
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sorting vector Z0(c) for a given c to obtain its cumulative distribution function and

only then evaluate Q̄
Z0(c)
α , using the same sorting as for Z0(c)(i). A subgradient of

f(c) is then easily computed as follows

∇f(c) = −1

ν

ν∑
i=1

h
(
x(i)
)
Q̄Z0(c)
α (i) +

1

ν

ν∑
j=1

h
(
xj
)
, (III.9)

with h
(
x(i)
)

maintaining the same ordering as in Z0(c)(i) used in (III.8).

The Approximate Dualization-of-risk Superquantile Regression Problem Dν is

defined as:

Problem:

Dν : min
c∈IRm

D̄α (Zν
0 (c)) =

1

ν

ν∑
i=1

Zν
0 (c)(i)Q̄Zν0 (c)

α (i)− 1

ν

ν∑
j=1

Zν
0 (c)j,

with c̄ν0 being obtained by setting c̄ν0 = q̄α(Zν
0 (c̄ν)), and Q̄

Zν0 (c)
α given by Proposi-

tion III.3.

We now turn to the implementation of these results. In the next subsections we

present three algorithms that are well known. First we start with a simple algorithm,

the subgradient method, and then move to an heuristic algorithm, the coordinate

descent method, and finish off with the cutting plane method. There are obviously

many other possible algorithms we could implement when solving the dual methods,

but we omit such investigation and only discuss these three as examples.

2. Subgradient Method

The subgradient method was originally developed by Naum Z. Shor and oth-

ers in the 1960s and 1970s; see Shor (1985). It is a simple algorithm that can be

implemented for solving a wide variety of problems, such as the minimization of

nondifferentiable convex functions.

The subgradient method is an iterative algorithm that aims to minimize a

convex function f , by iteratively obtaining a new ck+1 according to the following
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scheme

ck+1 = ck − δk∇f(ck), (III.10)

where ∇f(ck) is any subgradient of f evaluated at ck, and δk is the stepsize used in

iteration k. As a downside, this algorithm is not a descent method and it is possible

to obtain increased objective function values in any iteration, therefore we need to

store the best obtained objective function value by setting fkbest = min
{
fk−1
best , f

k
best

}
.

In fact, if we obtain the best function value so far in iteration k, we also need to store

ikbest = k. This way we guarantee to have fkbest = min
{
f(c1), f(c2), . . . , f(ck)

}
stored

for later use.

There are obviously many rules to define the stepsize used in algorithm SM,

as we describe below. For example, one could use a step with constant length instead,

δk = δ/‖∇f(ck)‖2, so that ‖ck+1 − ck‖2 = δ, or perhaps a diminishing stepsize, such

as δk = γ1/(k + γ2), with γ1 and γ2 being some positive scalars. The importance of

the right choice of stepsize δk becomes more aparent when we discuss computational

performances, later in Section III.C.

We now formally describe the subgradient method.

Algorithm SM:

Step 0. Choose an initial guess c0 ∈ IRm. Set k := 0.

Initialize f 0
best :=∞, and i0best := 0.

Step 1. Compute f(ck) and ∇f(ck), using Equations (III.8) and

(III.9), respectively.

If ∇f(ck) = 0, then ck is an optimal solution, stop.

Step 2. Set fkbest = min
{
fk−1
best , f(ck)

}
, and let ikbest = k if f(ck) = fkbest.

Step 3. Choose stepsize δk, with δk > 0.

Step 4. Define ck+1 = ck − δk∇f(ck).

Replace k by k + 1 and go to Step 1.
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3. Coordinate Descent Method

The coordinate descent method is an heuristic algorithm that is simple to

implement. In this method, the objective function is minimized along one coordinate

direction per iteration and a cycle is complete when all coordinates have been utilized

in this process. Although we could define any permutation of coordinates as the order

for the coordinate search, we will use the cyclical order for simplification. We benefit

from the possibility of computing the subgradient of the objective function, as defined

in (III.9), to perform line search in each coordinate direction.

We now formally describe the coordinate descent method.

Algorithm CDM:

Step 0. Start with an initial guess c0 ∈ IRm.

Set the cycle counter k := 1.

Step 1. Choose coordinate 1 and compute ck1 ∈ argminc1 f(c1, c
k−1
2 , . . . , ck−1

m ).

Step 2. Choose coordinate 2 and compute ck2 ∈ argminc2 f(ck1, c2, . . . , c
k−1
m ).

. . .

Step m. Choose coordinate m and compute ckm ∈ argmincm f(ck1, c
k
2, . . . , c

k−1
m ).

Replace cycle k by k + 1 and go to Step 1.

This algorithm terminates according to the threshold tolerance ε > 0, inputted

by the decision maker. For simplicity, we use the formula f(ck−1)− f(ck) ≤ ε as our

stopping criteria.

4. Cutting Plane Method

We finish Section III.B by describing the third algorithm we implement in the

numerical examples, in Chapter IV: the cutting plane method, which is guaranteed

to achieve an optimal solution if one exists.

The idea behind this algorithm is to solve an approximate linear program

each iteration. The cutting plane method starts off with our original unconstrained
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problem and with every iteration we obtain a cut to the feasible region that we add

as a new constraint for the following linear program. So it approximates the feasible

region by a finite set of closed half spaces and solves a sequence of approximating

linear programs until the optimal solution is found. As we notice, the size of the

linear program grows with the number of iterations and becomes rather slow for a

larger number of variables.

The cutting plane method is usually used in integer or mixed integer linear

programming problems but is also very popular when applied to convex minimiza-

tion problems whenever the objective function value and its subgradient are easily

computed, as we describe in detail below. Consider our minimization problem

min
c∈IRm

f(c) =
1

ν

ν∑
i=1

Z0(c)(i)Q̄Z0(c)
α (i)− 1

ν

ν∑
j=1

Z0(c)j.

Using ∇f(c0), see Equation (III.9), at an initial guess c0 ∈ IRm, we are able to build

a relaxation to our problem, as follows

min
ξ,c

ξ

s.t. f(c0) +∇f(c0)>
(
c− c0

)
≤ ξ, (III.11)

with ξ ∈ IR being a dummy variable. If we keep adding a new constraint per it-

eration k, as in (III.11), but now applied to the obtained optimal solution c̄k−1, we

construct the linear programming problem with K constraints, where K denotes the

total number of iterations,

min
ξ,c

ξ

s.t. f(ck) +∇f(ck)>
(
c− ck

)
≤ ξ, k = 0, . . . , K.

We now formally state the cutting plane method.
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Algorithm CPM:

Step 0. Start with an initial guess c0 ∈ IRm. Set k := 0.

Step 1. Compute f(ck) and ∇f(ck), using Equations (III.8) and

(III.9), respectively.

If ∇f(ck) = 0, then ck is an optimal solution, stop.

Step 2. Solve the Linear Program

min
ξ,c

ξ

s.t. f(ci) +∇f(ci)> (c− ci) ≤ ξ, i = 0, . . . , k.

Step 3. Get obtained optimal solution c̄ from Step 2 and set ck+1 = c̄.

Replace k by k + 1 and go to Step 1.

In the next section, we compare computational performances of the algorithms

we present in CHapters III.A and III.B. We also compare these complexity results

with least squares and quantile regression in order to understand how good these

presented computational methods are.

C. COMPLEXITY

In the previous two sections we present different computational methods for

the superquantile regression problem. When implementing these methods, it is useful

to know how efficient and costly they are. In this section, we compare primal ver-

sus dual methods in terms of worst-case complexity, and analyze the computational

performances of least squares and quantile regressions.

1. Least Squares Regression

In the case of least squares regression we have a system with ν linear equa-

tions, due to the ν observations in the data set, and m + 1 unknown coefficients,

(c0, c1, . . . , cm). We let X be a design matrix of dimension ν by (m + 1), with all

65



elements in the first column being set equal to 1 in order for us to be able to include

the intercept c0 in the regression model.

Then the best fitting coefficients (c̄0, c̄) are the ones obtained by solving the

quadratic minimization problem

min
(c0,c)∈IRm+1

ν∑
i=1

(
yi − c0 −

m∑
j=1

Xijcj

)2

,

and, in matrix notation, are equal to

(c̄0, c̄) = (X>X)−1X>y. (III.12)

In terms of computational cost this algorithm implies: multiplying X> by X, which

takes O(ν(m+ 1)2) arithmetic operations; multiplying X> by y, which takes another

O(ν(m+1)) arithmetic operations; computing the LU factorization of (X>X), which

takes another O((m + 1)3) arithmetic operations; and finally multiplying (X>X)−1

by (X>y), which takes O((m+ 1)2). So overall the running time of this procedure is

O(νm2), assuming of course that ν > m and X is a full rank matrix.

2. Quantile Regression

As discussed in Subsection II.A.3, the quantile regression function is obtained

by minimizing the (scaled) Koenker-Bassett error measure (Koenker, 2005). This

problem can be rewritten as a linear program as follows

min
c0,c,u,v

α 1>ν u+ (1− α) 1>ν v

s.t. c0 + 〈c, h(xi)〉+ ui − vi = yi, i = 1, . . . , ν

c0 ∈ IR

c ∈ IRm

u = (u1, . . . , uν) ∈ IRν

v = (v1, . . . , vν) ∈ IRν ,

where 1>ν denotes a transposed ν-dimensional vector of ones. This linear program has

a total of 2ν +m+ 1 number of variables and ν number of equality constraints. For
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us to be able to proceed with the computational performance analysis, we need to

transform the problem into standard form. Summarizing we then have 2(2ν+m+ 1)

variables and ν equality constraints.

Solving this linear program by means of an interior point method takes O((4ν+

2m + 2)3.5) operations to produce a solution. The path following algorithm is one

of such interior point methods. Monteiro and Adler (1989) refined the path follow-

ing algorithm to converge in O(
√

2(2ν +m+ 1) log(ε0/ε)) iterations by reducing the

duality gap from ε0 to ε, with O ((4ν + 2m+ 2)3) arithmetic operations per iteration.

The quantile regression implementation takes a total of O (ν3.5 log(ε0/ε)), as-

suming that ν is larger than m. Specialized algorithms (see for example Koenker,

2005) improve on this solution approach, but further discussions are beyond the scope

of this dissertation.

3. Superquantile Regression – Primal Methods

Let us start with the analytical integration presented in Subsection III.A.1. We

determine the computational performance of this method when the resulting linear

program is solved using an interior point method.

In order to determine the computational performance of problem P ν
LP, we

need to transform P ν
LP into a standard form linear programming problem. After this

transformation, we have 2 [(ν − να)(ν + 1) +m+ 1] + ν variables and (ν − να)ν + ν

equality constraints. Since να = dναe, with α being usually close to 1, να is almost

as big as the number of observations ν in the data set.

As done with the computational performance in the quantile regression case,

we use the convergence results we find in Monteiro and Adler (1989). The primal

method using analytical integration takes a total of O (ν7 log(ε0/ε)).

Let us now turn to the numerical integration method described in Subsection

III.A.2. Problem P ν,µ,w
Num is a linear program with m+ µ+ 1 + ν(µ+ 1) variables and

2ν(µ+1) inequality constraints. After transforming P ν,µ,w
Num into a standard form linear

program, we have 2(µν + µ+ ν +m+ 1) variables and (µ+ 1)ν equality constraints
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in the primal method with numerical integration. Since the number of observations

ν and integration subintervals µ are both usually large numbers and we disregard

the inputted weights in our complexity analysis, the implementation of the primal

methods for superquantile regression takes a total of O (µ3.5ν3.5 log(ε0/ε)).

4. Superquantile Regression – Dual Methods

We now compare the computational performance of the dual methods. Since

in the numerical examples we implement the subgradient method using a constant

stepsize rule, we analyze the computational performance of this algorithm under this

circumstance.

Let d(c0) = minc̄∈IRm ‖c0 − c̄‖ be the distance between the initial guess c0 and

the optimal solution c̄. And let {ck} be the sequence generated by the subgradient

method, with the stepsize δk fixed at some positive constant δ, with k ∈ {1, 2, . . . , K}.

Then, according to Proposition 6.3.3 in Bertsekas (2009), for any scalar ε > 0,

we have that

min
0≤k≤K

f(ck) ≤ f(c̄) +
δu2 + ε

2
, (III.13)

where K is given by

K =

⌊
d(c0)2

δε

⌋
, (III.14)

with u being the upper bound on the norm of∇f(ck) ∈ ∂f(ck),∀k ≥ 0. The number of

iterations is independent of the number of variables in the problem. The most costly

operation of this algorithm in our case is the computation of ∇f(ck) at any given

iteration k. Since the vector Z0(ck) needs to be sorted in order to compute ∇f(ck),

as stated in equation (III.8), the subgradient method takes O(ν log ν) operations per

iteration. Note that by establishing δ = ε/u, we can obtain an ε-optimal solution in

O(1/ε2) iterations. So the subgradient method takes a total of O((1/ε2)ν log ν).

We note that we present the complexity result for the slowest of the described

dual methods. Implementing the Nesterov’s optimal method (see Nesterov, 1983)

improves the obtained result for a total of O((1/ε)ν log ν).
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These results show that dual methods are not much slower than solving for

least squares regression and such a conclusion is promising for superquantile regres-

sion.

In the next chapter we present a series of numerical examples that allow us to

compare runtimes of the various algorithms.
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IV. NUMERICAL EXAMPLES

In this chapter, we illustrate superquantile regression in several numerical ex-

amples. We start with a simple example that allows us to compare computational

methods in terms of runtimes, solution vectors and function values. Then we ap-

ply superquantile regression to the well-known data sets, Engel data and Brownlee

stack loss plant data, and compare the obtained superquantile regression models to

least squares and quantile regression functions. In the fourth example, we apply su-

perquantile regression to an investment analysis problem taken from a case study

of the Portfolio Safeguard documentation (American Optimal Decisions, Inc., 2011).

The fifth and sixth examples address military applications, the first concerning U.S.

Navy helicopter pilots and the second Portuguese Navy submariners, and in both

examples their mission employment. We then show an example that arises in uncer-

tainty quantification of a rectangular cross section of a short structural column under

uncertain yield stress and uncertain loads. Finally we revisit the first example in or-

der to address the issue of superquantile tracking. We experiment different regression

models. We compare the obtained solution vectors, coefficients of determination and

adjusted coefficients of determinations, and implement Cook’s distances applied to

superquantile regression.

Computations are mostly carried out in Matlab version 7.14 on a 2.26 GHz

laptop with 8.0 GB of RAM using Windows 7. However we implement both least

squares and quantile regression in R programming language (R Development Core

Team, 2008). Specifically for solving the superquantile regression problem with a

numerical integration scheme P ν,µ,w
Num , we use Portfolio Safeguard in Matlab, by Amer-

ican Optimal Decisions, Inc. (2011), with VAN as the optimization solver. Since we

assume the subintervals are equally likely when solving for the primal method using

numerical integration schemes, from now on we denote problem P ν,µ,w
Num by P ν,µ

Num in-

stead, and assume wi = 1/µ, for i = 0, 1, ..., µ. When solving the primal method with

71



analytical integration, P ν
LP, and the dual method, Dν , we employ GAMS version 23.7

with the CPLEX 12.3 solver.

A. COMPUTATIONAL COST

We start by considering a loss random variable

Y = X1 +X2ε,

where ε is a standard normal random variable and X = (X1, X2) is uniformly dis-

tributed on [−1, 1]× [0, 1], with ε,X1, and X2 independent. We consider a regression

function of the form f(x) = c0 + c1x1 + c2x2 and set α = 0.90. This simple example

serves as a comparison tool between computational methods and their performances,

as well as the obtained approximate solution vectors, since we know the conditional

superquantile, which in this case is (c0, c1, c2) = (0, 1, 1.755). The detailed explanation

can be seen in Section IV.H. We give an initial guess (c0
1, c

0
2) = (0, 0) when imple-

menting the dual methods, and c̄0 is consecutively computed utilizing the regression

vector (c̄1, c̄2) obtained by the implemented algorithm.

We first examine the computational effort required to obtain an approximate

regression vector. Table 1 shows computing times for solving problem P ν
LP for increas-

ingly larger sample sizes ν obtained by independent draws from (ε,X1, X2). While

the results correspond to single instances of P ν
LP, the times vary little between two

instances of the same size and the computing times are therefore representative. As

ν 100 200 300 400 500 600 700 800 900 1000 1500 2000
Time 0 0 2 6 17 32 45 65 163 174 996 2,972

Table 1. Example A: Computing times (sec.) for solving P ν
LP for increasingly larger

sample sizes ν.

predicted from the theoretical results discussed at the end of Subsection III.A.1, the

computing time grows rapidly as the sample size ν increases. In addition to the
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inconvenience of long computing times, memory requirements become problematic.

Therefore solving P ν
LP for large sample sizes is challenging, if not impossible, and we

examine alternative approaches.

Second, we consider the alternative primal method approach based on solving

P ν,µ
Num. While this approach introduces a numerical integration error, Proposition III.1

ensures that the error is negligible for large µ. In fact, as we see next empirically,

moderately large µ suffices for probability levels α close to one. Moreover, the sub-

stantial reduction in problem size, as compared to that of P ν
LP, reduces computing

times dramatically.

Since q̄β(Zν
0 (c)) may be nonsmooth as a function of β, standard numerical

integration error bounds may not apply. However, since q̄β(Zν
0 (c)) is continuous and

nondecreasing as a function of β, the use of left-endpoint and right-endpoint numerical

integration rules in P ν,µ
Num provide lower and upper bounds on the optimal value of

DSqRν , respectively. Table 2 shows solution vectors (c0, c1, c2) for µ = 100, µ =

1000, and µ = 5000 integration subintervals, when we implement left-endpoint, right-

endpoint, and Simpson’s numerical integration schemes, for sample sizes of ν = 100,

ν = 1000, ν = 10000, and ν = 100000.

For ν = 100, we notice that the solutions are insensitive to the numerical

integration rule as well as the subintervals µ specific to the integration scheme. The

obtained solutions are essentially identical to the regression vector obtained from P ν
LP;

see Row 2 of Table 2. Here the superquantile coefficient of determination is R̄2
0.90 =

0.5683 for all the presented cases, including P ν
LP, which also supports the fact that

the numerical integration rule does not affect the obtained solution. Each one of the

solutions of P ν,µ
Num for ν = 100 is obtained quickly, in about 0.08 to 8 seconds for

µ = 100, µ = 1000, and µ = 5000; see the last column of Table 2. In this case, we

clearly notice that µ = 100 suffices and takes less than a tenth of a second to run.

When we increase the sample size ν, we start to notice that the solution vectors

are slightly different but the magnitudes of these differences are small for subintervals

73



Problem Integration Rule ν µ c0 c1 c2 Time

P ν
LP NA 100 NA 0.0630 1.0951 1.5841 0.05

P ν,µ
Num

Left Endpoint 100 100 0.0630 1.0951 1.5841 0.07
Right Endpoint 100 100 0.0630 1.0951 1.5841 0.08

Simpson’s 100 100 0.0630 1.0951 1.5841 0.09
Left Endpoint 100 1000 0.0630 1.0951 1.5841 0.79

Right Endpoint 100 1000 0.0630 1.0951 1.5841 0.83
Simpson’s 100 1000 0.0630 1.0951 1.5841 0.77

Left Endpoint 100 5000 0.0630 1.0951 1.5841 7.81
Right Endpoint 100 5000 0.0630 1.0951 1.5841 7.24

Simpson’s 100 5000 0.0630 1.0951 1.5841 7.10

P ν
LP NA 1000 NA 0.0680 1.0108 1.7322 174.24

P ν,µ
Num

Left Endpoint 1000 100 0.0689 1.0112 1.7290 0.12
Right Endpoint 1000 100 0.0658 1.0099 1.7398 0.13

Simpson’s 1000 100 0.0680 1.0108 1.7322 0.13
Left Endpoint 1000 1000 0.0683 1.0112 1.7310 1.29

Right Endpoint 1000 1000 0.0678 1.0106 1.7327 1.26
Simpson’s 1000 1000 0.0680 1.0108 1.7322 1.21

Left Endpoint 1000 5000 0.0680 1.0109 1.7321 10.91
Right Endpoint 1000 5000 0.0680 1.0108 1.7322 11.44

Simpson’s 1000 5000 0.0680 1.0108 1.7322 9.76

P ν,µ
Num

Left Endpoint 10000 100 0.0835 1.0049 1.6374 0.58
Right Endpoint 10000 100 0.0799 1.0050 1.6492 0.56

Simpson’s 10000 100 0.0818 1.0048 1.6429 0.56
Left Endpoint 10000 1000 0.0820 1.0048 1.6423 5.91

Right Endpoint 10000 1000 0.0816 1.0048 1.6435 5.00
Simpson’s 10000 1000 0.0818 1.0048 1.6430 5.27

Left Endpoint 10000 5000 0.0818 1.0048 1.6428 28.93
Right Endpoint 10000 5000 0.0817 1.0048 1.6431 32.72

Simpson’s 10000 5000 0.0818 1.0048 1.6429 29.12

P ν,µ
Num

Left Endpoint 100000 100 0.8149 0.2484 1.1749 5.05
Right Endpoint 100000 100 0.8242 0.2411 1.1572 4.55

Simpson’s 100000 100 0.8176 0.2454 1.1702 3.98
Left Endpoint 100000 1000 0.8152 0.2462 1.1750 46.00

Right Endpoint 100000 1000 0.8162 0.2454 1.1732 38.01
Simpson’s 100000 1000 0.8155 0.2459 1.1746 46.07

Left Endpoint 100000 5000 0.8155 0.2460 1.1746 307.34
Right Endpoint 100000 5000 0.8156 0.2458 1.1743 330.99

Simpson’s 100000 5000 0.8156 0.2459 1.1744 278.55

Table 2. Example A: Solution vectors and computing times (sec.) for varying number
of observations ν, integration rules for solving P ν,µ

Num as well as number of integration
subintervals µ.
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of µ = 100 and µ = 1000. For numerical integration scheme implementations with

µ = 5000, these differences are almost inexistent, but the computing times are larger.

Therefore the statistician should take this into consideration when selecting the num-

ber of subintervals for the numerical integration scheme. It is a tradeoff between

obtaining better solutions versus computing times. Also we notice there is another

issue we encounter when solving superquantile regression problems for sample sizes

as large as 100000 observations. In Rows 31-39 of Table 2, we intentionally include

the solution vectors for ν = 100000 using the same number of subintervals as imple-

mented in the other cases. The discrepancies in solution vectors are consequence of

rounding errors and we refer to Borges (2011) for further details.

One detail that is not included in Table 2 is the coefficient of determination

R̄2
0.90. For all the presented cases, the coefficient of determination takes the values of

0.4222, 0.3917, and 0.1029, for sample sizes ν = 1000, ν = 10000, and ν = 100000,

respectively. We notice that R̄2
0.90 decreases as we increase the size of the data sample,

which means that the linear model f(x) = c0 + c1x1 + c2x2 does not fully capture the

variability of the data, as expected, and a study of other models may be warranted.

However, we omit such an investigation.

As discussed in Chapter III, the dual method is another approach to solve the

deviation-based superquantile regression problem which theoretically demonstrates

potential for large sample sizes. Since numerical integration not only introduces a

numerical integration error but also takes increasingly longer to run for increasing

sample sizes, we proceed with the implementation of the dual methods.

Third, we solve the superquantile regression problem by implementing the dual

methods of Section B in Chapter III, i.e., subgradient, coordinate descent, and cutting

plane methods. Since defining the stepsize and tolerance for the three algorithms, as

well as the maximum number of iterations in the specific case of the subgradient

method, can be a difficult process, we establish the following input parameters for

each algorithm as a natural choice for us to be able to compare all three methods. We
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note that refining these parameters as well as implementing more efficient algorithms

could return even better computing times but such an investigation is not the purpose

here. Our goal with this example is to demonstrate the potential for dual methods.

For the subgradient method, we fix the stepsize to a constant value, δ = 0.1, and run

the algorithm for 1000 iterations. In the case of the coordinate descent method, we

include a tolerance of 10−12 and define 1000 as the maximum number of iterations.

We implement the cutting plane method with a maximum of 1000 cuts, and a gap of

10−8.

Table 3 shows the computing times needed for solving problem Dν for increas-

ingly large sample sizes ν implementing these algorithms. Here the computing times

are also representative, for the same reason as in Table 1. As expected, the subgradi-

ν
Computing Times

Subgradient Coordinate Descent Cutting Plane

100 0.13 0.67 0.91
1000 0.34 1.20 2.07
5000 1.43 0.70 0.95
10000 2.88 0.88 3.00
25000 5.96 3.24 2.20
50000 11.92 8.30 1.73
75000 21.53 13.78 1.98
100000 27.38 19.20 1.78

Table 3. Example A: Computing times (sec.) for solving Dν using different imple-
mentations of the dual methods for increasing sample sizes ν.

ent method is the slowest of the three algorithms for almost all the presented cases,

especially for sample sizes greater than 1000 observations. In all the described dual

methods and empirically, the computing times grow linearly with the sample size ν,

with the cutting plane method having the smallest slope of the three, as shown in

Figure 6.

In Figure 7, we picture the computing times for primal versus dual methods,

in logarithmic scale. Here we choose to present the Simpson’s integration rule with
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Figure 6. Example A: Computing times for solving Dν with three different algorithms
(subgradient, coordinate descent, and cutting plane methods), for increasing sample
sizes ν.

µ = 1000 subintervals and the dual methods algorithms with the input parameters

as stated before. We clearly notice that implementing the cutting plane method

improves the computational performance, especially for large sample sizes. Also, for

larger samples sizes and smaller probability levels α, we certainly need to increase

the number of integration subintervals µ.

We also compare the obtained solution vectors and corresponding objective

function values; see Table 4. Again we note that it is not possible to solve P ν
LP for

sample sizes larger than ν = 1000. We use Simpson’s rule with µ = 1000 intervals as

the numerical integration scheme for all sample sizes. We realize that the obtained

solution vectors are nearly identical.

Finally we analyze how changing the probability level α and the number of
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Figure 7. Example A: Primal versus dual methods computing times for increasing
sample sizes ν, in logarithmic scale.

observations ν affect the computational performance of the implemented algorithms.

Obviously, the primal methods are affected by changes in the probability level α since

the integral in problem DSqRν is defined between α and 1. The smaller the value of α,

the smaller να = dναe gets, and consequently the number of variables and inequality

constraints in problem P ν
LP increases due to the increased difference (ν − να). In

the numerical integration schemes, the smaller α gets, the more subintervals µ are

required to obtain same accuracy.

As we can observe in Table 5, the sample size ν influences the computing times

of the subgradient method, but the probability level α does not produce such an effect.

We note that the computing times for the sample sizes ν = 100 and ν = 1000 are not

exactly the same for all the presented probability levels α. These values differ in the
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Computational
ν µ c0 c1 c2

Function
Time

Method Value

Analytical Int. 100 NA 0.0630 1.0951 1.5841 0.844477 0.05
Numerical Int. 100 1000 0.0630 1.0951 1.5841 0.844477 0.77
Subgradient 100 NA 0.0673 1.1004 1.5699 0.844575 0.13

Coord. Descent 100 NA 0.0631 1.0952 1.5839 0.844478 0.67
Cutting Plane 100 NA 0.0630 1.0951 1.5841 0.844477 0.91

Analytical Int. 1000 NA 0.0680 1.0108 1.7322 1.049276 174.24
Numerical Int. 1000 1000 0.0680 1.0108 1.7322 1.049276 1.21
Subgradient 1000 NA 0.0680 1.0109 1.7321 1.049276 0.34

Coord. Descent 1000 NA 0.0680 1.0109 1.7321 1.049276 1.20
Cutting Plane 1000 NA 0.0680 1.0109 1.7320 1.049276 2.07

Analytical Int. 10000 — — — — — —
Numerical Int. 10000 1000 0.0818 1.0048 1.6430 1.092066 5.27
Subgradient 10000 NA 0.0818 1.0048 1.6429 1.092033 2.88

Coord. Descent 10000 NA 0.0834 1.0047 1.6378 1.092040 0.88
Cutting Plane 10000 NA 0.0817 1.0049 1.6432 1.092033 3.00

Table 4. Example A: Solution vectors and computing times (sec.) for the superquan-
tile regression problem with varying computational methods, and sample sizes ν.

Dual
α ν c0 c1 c2

Function
Time

Method Value

0.25
100 -0.0478 1.1038 0.6420 0.502796 0.14
1000 -0.0557 0.9988 0.6726 0.584710 0.33
10000 -0.0398 0.9990 0.6048 0.608587 2.61

Subgradient
0.50

100 0.0163 1.0901 0.8440 0.598695 0.14
1000 0.0309 0.9943 0.8822 0.705208 0.33

Method 10000 0.0390 1.0014 0.8239 0.732942 2.99

0.75
100 0.0390 1.1029 1.2056 0.729180 0.14
1000 0.0762 0.9976 1.2239 0.875049 0.33
10000 0.0742 1.0009 1.2050 0.905114 2.93

Table 5. Example A: Solution vectors and computing times (sec.) for solving Dν

when implementing the subgradient method with varying probability levels α and
number of observations ν.
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third decimal places, which makes the magnitude of such differences negligible.

Table 6 presents the solution vectors and computing times for the coordinate

descent method for different probability levels α and sample sizes ν. Similarly to the

subgradient method, we realize that only the sample size ν has a significant effect on

the computing times.

Dual
α ν c0 c1 c2

Function
Time

Method Value

0.25
100 -0.0478 1.1038 0.6419 0.502796 0.62
1000 -0.0227 0.9995 0.5937 0.585203 0.16

Coordinate 10000 -0.0392 0.9990 0.6034 0.608588 2.51

0.50
100 0.0163 1.0901 0.8439 0.598695 0.65

Descent 1000 0.0340 0.9943 0.8734 0.705218 0.21
10000 0.0403 1.0014 0.8205 0.732944 1.58

Method
0.75

100 0.0390 1.1029 1.2056 0.729180 0.70
1000 0.0771 0.9977 1.2213 0.875050 0.21
10000 0.0763 1.0009 1.1987 0.905121 1.03

Table 6. Example A: Solution vectors and computing times (sec.) for solving Dν

when implementing the coordinate descent method with varying probability levels α
and number of observations ν.

Dual
α ν c0 c1 c2

Function
Time

Method Value

0.25
100 -0.0479 1.1038 0.6420 0.502797 1.13
1000 -0.0556 0.9989 0.6723 0.584710 1.51

Cutting 10000 -0.0399 0.9989 0.6049 0.608587 2.90

0.50
100 0.0162 1.0901 0.8440 0.598695 2.23

Plane 1000 0.0307 0.9944 0.8827 0.705208 1.21
10000 0.0389 1.0017 0.8243 0.732943 1.22

Method
0.75

100 0.0390 1.1029 1.2056 0.729180 0.80
1000 0.0763 0.9976 1.2238 0.875049 1.97
10000 0.0739 1.0008 1.2059 0.905114 1.16

Table 7. Example A: Solution vectors and computing times (sec.) for solving Dν

when implementing the cutting plane method with varying probability levels α and
number of observations ν.

80



A different result is obtained when we implement the cutting plane method,

as shown in Table 7. The computing time differences are not significant in any of the

cases. Here we run the cutting plane method with bounds on the vectors (ck1, c
k
2), for

iteration k. Decreasing these bounds by making them more restrictive, and reducing

the maximum number of cuts that the algorithm can add, reduces the computing

times shown by Column 8 in Table 7, and the magnitudes of the computing times

differences become even less significant.

Out of curiosity, if we implement the subgradient method for this example with

ten times more iterations, i.e., a total of 10000 iterations, and reduce the stepsize to

δ = 0.01, we find that the solution vectors are exactly the same as the ones presented

in Table 5, with the same objective function values, but the computing times increase

by at least a factor of 10 in the cases of ν = 10000 and ν = 100000, a factor of 18 for

ν = 1000, and a factor of 30 for ν = 100. This shows how important the selection of

the right stepsize and maximum number of iterations is.

From this example we conclude that for small sample sizes it is beneficial to

run the primal method using analytical integration, since we obtain the exact solution

vector and the computing times are not drastically higher than solving Dν . As the

sample size increases, the results show that we should rely on the dual method and

implement the cutting plane method or any other algorithm that is comparable to

the cutting plane method. Another aspect we observe is the fact that the probability

level α does not produce any visible effect on the dual methods computing times. To

the contrary, the primal methods, with analytical or numerical integration schemes,

are clearly affected due to changes in α since the integral interval is adjusted accord-

ingly and the number of variables changes. Implementing the primal methods with

numerical integration schemes implies the wise selection of the number of subintervals

µ according to the sample size ν and probability level α.
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B. ENGEL DATA

This next example is based on a data set originally worked by Ernst Engel in

1857, and used by Koenker and Bassett in their regression quantiles studies (Koenker

& Bassett Jr., 1982). Engel presents this data set to show his hypothesis that the

annual expenditures on food for Belgian working class families increase less than the

increase of their annual household incomes. In Koenker (2005), the author uses this

data set as an example to address the issues of estimating the asymptotic covariance

matrix in statistical inference for quantile regression and estimates six quantile re-

gression functions for probability levels α ∈ {0.05, 0.10, 0.25, 0.75, 0.90, 0.95}. For this

example, we are interested in comparing these obtained quantile regression functions

with superquantile regression functions at the same probability levels α, and verify

how both regression techniques differ conceptually.

We have a data set of 235 observations of the income and the expenditure on

food in Belgian francs for Belgian working class annual households, see Figure 8(a).

As done in Koenker (2005), we also transform both variables to the logarithmic scale,

see Figure 8(b). We seek to quantify the food expenditure Y and consider a linear

regression function f1(X) = c0 + cX, where X is the explanatory random variable

that represents the household income for Belgian working class.

In Figure 9(b), we observe the α-quantile regression models, for probability

levels α ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}, in logarithmic scale. Here we also

include the least squares and the 0.50-quantile regression functions for comparison

and highlight the obtained 0.75-quantile regression function that we use later in this

example. Although some of these quantile regression functions look parallel, their

slopes are distinct; see Koenker (2005) for further discussion. These slope differences

are more evident in Figure 9(a).

In Figure 10, we present the α-superquantile regression models, for different

probability levels α ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}. Again we include the

least squares and the 0.50-superquantile regression functions and highlight the ob-
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(a) Original display.
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(b) Logarithmic scale display.

Figure 8. Example B: Engel data set.
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(b) Logarithmic scale display.

Figure 9. Example B: Least squares and quantile regression functions, for varying α.
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tained 0.75-superquantile regression fit.

An interesting detail shown in Figure 9 is that the obtained quantile regression

models nearly “span” the observations, i.e., we have regression functions above and

below the least squares regression fit. As we observe in Figure 10, the superquan-

tile regression models for varying probability levels α do not have such property.

One would have to change the orientation of the original problem in order to obtain

regression functions below the least squares regression model, since q̄0(Y ) = E[Y ].

In order to compare the obtained regression vectors and the corresponding

coefficient of determination for the model f1(x) = c0 + c1x, we refer to Table 8. We

cosider the same probability levels α as shown in Figures 9 and 10. Due to the small

sample size, 235 observations, we solve the deviation-based superquantile regression

problem by analytical integration, P ν
LP. We refer to Figure 11(a) to show how close the

quantile and superquantile linear regression functions are in the case where α = 0.75.

We now consider a quadratic model of the form f2(x) = c0 + c1x + c2x
2.

In Figure 11(b), we observe the different quadratic fits for least squares, quantile,

and superquantile regressions. Although both graphs in Figure 11 show that the

0.75-superquantile regression functions look exactly alike, Figure 11(b) actually has

a curvature that can be noted using different scales on the horizontal axis. Table

8 shows the obtained regression vectors (c0, c1, c2) for the quadratic model, using

distinct regression techniques. We note that the coefficient of determination for the

linear are slightly smaller than for the quadratic models, which means that adding

the term c2x
2 slightly improves the obtained results in some sense.

In Figure 12, we visualize quantile and superquantile regression functions for

varying probability levels α. It is interesting to notice how the quantile regression fits

are severely influenced by one observation where four quantile regression functions

cross each other just below the least squares fit, represented by the big black dot. To

the contrary, the obtained superquantile regression fits are not greatly influenced by

this observation and depict other observations.
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(a) Original display.
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(b) Logarithmic scale display.

Figure 10. Example B: Least squares and superquantile regression functions, for
varying α.
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Regression Model α c0 c1 c2 R̄2
α

Least Squares NA 147.475 0.4852 — 0.8304

Quantile

0.05 124.880 0.3434 — —
0.10 110.142 0.4018 — —
0.25 95.4835 0.4741 — —
0.50 81.4822 0.5602 — —
0.75 62.3966 0.6440 — —
0.90 67.3509 0.6863 — —
0.95 64.1040 0.7091 — —

Superquantile

0.05 18.8791 0.6370 — 0.6882
0.10 27.0860 0.6387 — 0.6913
0.25 45.2404 0.6425 — 0.7043
0.50 52.3684 0.6657 — 0.7322
0.75 57.3732 0.6924 — 0.7716
0.90 77.4796 0.7039 — 0.8070
0.95 88.6620 0.7097 — 0.8223

Least Squares NA 8.0060 0.7100 -6.603e-5 0.8671

Quantile

0.05 -31.7001 0.6815 -1.295e-4 —
0.10 52.6260 0.5009 -2.884e-5 —
0.25 22.8226 0.6123 -5.009e-5 —
0.50 5.7593 0.7243 -7.198e-5 —
0.75 -26.0488 0.8378 -9.360e-5 —
0.90 72.2423 0.6724 7.838e-6 —
0.95 44.3764 0.7445 -1.419e-5 —

Superquantile

0.05 -28.7584 0.7354 -4.243e-5 0.6903
0.10 -13.3480 0.7212 -3.498e-5 0.6928
0.25 17.2230 0.6946 -1.896e-5 0.7050
0.50 32.8155 0.7034 -1.439e-5 0.7327
0.75 45.6962 0.7144 -8.130e-6 0.7717
0.90 54.6966 0.7461 -1.467e-5 0.8079
0.95 53.0274 0.7777 -2.522e-5 0.8241

Table 8. Example B: Solution vectors (c0, c1) and coefficients of determination for
the linear model of the form f1(x) = c0 + c1x, and solution vectors (c0, c1, c2) and
coefficients of determination for the quadratic model of the form f2(x) = c0 + c1x +
c2x

2.
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(a) Linear model f1(x) = c0 + c1x.
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2.

Figure 11. Example B: Regression functions for linear and quadratic models.
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(a) Quantile regression for varying probability levels α.
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(b) Superquantile regression for varying probability levels α.

Figure 12. Example B: Least squares, quantile, and superquantile regression functions
for the quadratic model f2(x) = c0 + c1x+ c2x

2.
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As a conclusion to this example, we note that superquantile regression brings

additional information concerning the tail realizations of our loss random variable.

The linear fits from quantile and superquantile regressions are close, with only a slight

difference in slope. However, the quadratic superquantile model provides a distinct

perspective. In the quadratic case, quantile regression is highly affected in a dubious

manner by one observation.

C. BROWNLEE STACK LOSS PLANT DATA

This example is based on a data set with 21 observations from the Brownlee

stack loss plant data set, which defines the oxidation of ammonia (NH3) to nitric acid

(HNO3) of a plant, as described in detail in Brownlee (1965).

We seek to estimate the stack loss random variable Y , representing ten times

the percentage of ammonia going into the plant that escapes from the absorption

tower, using three explanatory random variables: air flow (Xaf), which represents

the rate of operation of the plant; water temperature (Xwt), which denotes the tem-

perature of cooling water circulated through coils in the absorption tower; and acid

concentration (Xac), [per 1000, minus 500].

Figure 13 shows the scatterplot matrix of the stack loss data, where we observe

the pairwise correlations. Here we notice a linear correlation between stack loss and

air flow and a polynomial correlation between stack loss and water temperature. We

explore these two possible models and compare the obtained results with coefficient

of determination calculations, as described in Section II.C.

We first consider a linear model of the form f1(x) = c0 +cafxaf +cwtxwt +cacxac.

Table 9 shows the obtained regression coefficients after solving P ν
LP. All the instances

of problem P ν
LP take approximately one quarter of a second to run due to the small

number of observations in the data sample.

From Table 9, we conclude that a linear model with all three explanatory ran-

dom variables is reasonable. It is interesting to note that the resulting coefficients of
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Figure 13. Example C: Stack loss data scatterplot matrix.
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Regression α c0 caf cwt cac R̄2
α R̄2

α,Adj

Least Squares NA -39.9197 0.7156 1.2953 -0.1521 0.9136 0.8983

Quantile

0.25 -36.0000 0.5000 1.0000 0.0000 — —
0.50 -39.6899 0.8319 0.5739 -0.0609 — —
0.75 -54.1897 0.8707 0.9828 0.0000 — —
0.90 -58.5433 0.7930 1.3054 0.0382 — —

Superquantile

0.25 -55.1432 0.8056 1.2037 0.0000 0.7478 0.7033
0.50 -58.6210 0.7930 1.3054 0.0382 0.7750 0.7353
0.75 -60.1368 0.7500 1.4561 0.0570 0.8050 0.7706
0.90 -58.4620 0.5246 1.8584 0.1073 0.8231 0.7919

Table 9. Example C: Regression vectors, R̄2
α, and R̄2

α,Adj for the linear model f1 which
includes all explanatory variables, and for different probability levels α.

α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
R̄2
α 0.7384 0.7402 0.7423 0.7447 0.7478 0.7516 0.7563 0.7618 0.7682

α 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
R̄2
α 0.7750 0.7818 0.7883 0.7944 0.8001 0.8050 0.8110 0.8173 0.8231

Table 10. Example C: Coefficients of determination for different probability levels α.

determination R̄2
α and adjusted coefficients of determination R̄2

α,Adj for superquantile

regression increase with α, which lead us to further experiment for various probability

levels α. Table 10 shows the obtained coefficients of determination for varying α.

We next analyze a simpler model, using water temperature as the only available

explanatory variable, and compare the corresponding linear f2(x) = c0 + cwtxwt and

quadratic models f3(x) = c0 + cwtxwt + cwt2x
2
wt; see Table 11. For the situation where

one only has water temperature as the explanatory variable, applying the quadratic

model f3 slightly reduces the coefficients of determination. However we plot the

obtained regression functions, see Figure 14(b), and notice that the quadratic models

better represent the data.

It is interesting to notice that the 0.90-quantile and 0.90-superquantile regres-

sion functions are exactly the same in the quadratic model f3. This is due to a small
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Model Regression α c0 cwt cwt2 R̄2
α R̄2

α,Adj

f2

Least Squares NA -41.9109 2.8174 — 0.7665 0.7542

Quantile

0.25 -32.0000 2.1667 — — —
0.50 -47.8571 3.1429 — — —
0.75 -41.0000 2.8889 — — —
0.90 -42.0000 3.1111 — — —

Superquantile

0.25 -43.6667 3.0000 — 0.5649 0.5420
0.50 -41.7619 3.0000 — 0.5954 0.5741
0.75 -39.1905 3.0000 — 0.6440 0.6250
0.90 -38.0476 3.0000 — 0.6715 0.6540

f3

Least Squares NA 151.5654 -15.2555 0.4131 0.8755 0.8617

Quantile

0.25 148.6000 -15.1583 0.4083 — —
0.50 200.8500 -19.8333 0.5167 — —
0.75 110.1429 -11.1381 0.3191 — —
0.90 205.5714 -20.6714 0.5571 — —

Superquantile

0.25 167.5589 -16.9167 0.4583 0.6676 0.6306
0.50 183.9524 -18.5000 0.5000 0.6884 0.6538
0.75 205.4789 -20.6714 0.5571 0.7490 0.7211
0.90 205.5714 -20.6714 0.5571 0.7792 0.7546

Table 11. Example C: Regression vectors, R̄2
α, and R̄2

α,Adj for linear and quadratic
models, f2 and f3, respectively, for varying probability levels α.

data set and how the observations are dispersed. For example, here we have three

observations at sample point (xj, yj) = (20, 15). For such a very small data set, hav-

ing coincident observations does not help obtaining better quantile or superquantile

regression fits. We notice that the 0.75-quantile regression function is a clear example

of how having small data sets aggravated by overlapping observations influences the

obtained regression vector and may cause the function to shift accordingly. In this

case, we realize that both 0.75-quantile and 0.75-superquantile regression functions

cross the point (xj, yj) = (20, 15).

As a conclusion to this example, we note that small data sets in superquantile

regression are problematic to deal with. As a thumb rule, one needs 1/(1− α) times

more observations when performing superquantile regression than when in the case

of least squares regression. Therefore the obtained approximating regression vectors
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(a) Linear model f2(x) = c0 + cwtxwt.
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Figure 14. Example C: Regression functions for linear and quadratic models.
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for small data sets should be considered with care when used in decision making

processes.

D. INVESTMENT ANALYSIS

The next example is a case study taken from the “Style Classification with

Quantile Regression” documentation in Portfolio Safeguard, by American Optimal

Decisions, Inc. (2011), and deals with the negative return of the Fidelity Magellan

Fund as predicted by the explanatory variables Russell 1000 Growth Index (XRLG),

Russell 1000 Value Index (XRLV), Russell Value Index (XRUJ), and Russell 2000

Growth Index (XRUO). We change the orientation from “return” to “negative return”

to be consistent with the orientation of a loss random variable in this dissertation.

The indices classify the style of the fund; see American Optimal Decisions, Inc. (2011)

for details. There are ν = 1264 total observations available.

We start by considering a linear model f1(x) = c0 + cRLGxRLG + cRLVxRLV +

cRUJxRUJ + cRUOxRUO and compare the obtained approximate regression vectors for

least squares, quantile, and superquantile regression models under a probability level

α =0.75 and 0.90, as shown in Rows 2-6 of Table 12. DSqRν is solved through

P ν,µ
Num with Simpson’s rule as the integration scheme and µ = 1000 subintervals, while

quantile regression is carried out directly in Portfolio Safeguard Shell Environment

(American Optimal Decisions, Inc., 2011). Table 12 (last column) also shows the cor-

responding adjusted coefficients of determination. The fits are good and a majority of

the variability in the data is captured. However, the small values of cRUO and also the

corresponding p-value from the least squares regression point to the possible merit

of dropping XRUO as explanatory variable. We from now on focus on superquan-

tile regression. A new model f2(x) = c0 + cRLGxRLG + cRLVxRLV + cRUJxRUJ yields

the approximate regression vectors of Table 12 (Rows 7-8), which also shows the ob-

tained adjusted coefficients of determination R̄2
α,Adj. The fact that we analyze R̄2

α,Adj

instead of R̄2
α enable us to better compare fits across models with different numbers
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Model Regression α c0 cRLG cRLV cRUJ cRUO R̄2
α,Adj

f1

LS NA 0.0010 -0.5089 -0.5180 0.0484 0.0061 0.9823

Quantile
0.75 0.0045 -0.5438 -0.4518 0.0159 0.0173 —
0.90 0.0089 -0.5177 -0.4602 0.0156 -0.0001 —

Super- 0.75 0.0095 -0.5036 -0.4723 0.0192 0.0009 0.8731
quantile 0.90 0.0138 -0.4837 -0.4912 0.0223 -0.0019 0.8718

f2
Super- 0.75 0.0095 -0.5028 -0.4728 0.0200 — 0.8733

quantile 0.90 0.0138 -0.4855 -0.4906 0.0210 — 0.8720

f3

0.75 0.0137 -0.8228 — — — 0.7380
0.90 0.0218 -0.8189 — — — 0.7248
0.75 0.0321 — -1.0668 — — 0.5940

Super- 0.90 0.0475 — -1.0727 — — 0.5702
quantile 0.75 0.0515 — — -0.7745 — 0.4103

0.90 0.0714 — — -0.6949 — 0.4162
0.75 0.0344 — — — -0.5498 0.3962
0.90 0.0512 — — — -0.5145 0.2593

Table 12. Example D: Approximate least squares (LS), quantile, and superquantile
regression vectors and R̄2

α,Adj for models f1, f2, and f3.

of explanatory variables. In comparison, the fit improves slightly by dropping XRUO.

We further reduce the model to a single explanatory variable, f3(x) = c0 +cixi,

with i ∈ {RLG,RLV,RUJ,RUO}, and examine the four possibilities in Rows 9-16

of Table 12. We find that R̄2
α,Adj deteriorates, but only moderately for the model

c0 + cRLGXRLG. This simple model captures much of the variability in the data set.

A somewhat poorer fit is achieved by XRLV, which is illustrated in Figure 15, for α =

0.90. That figure also depicts the corresponding quantile and least squares regression

lines. It is apparent that superquantile regression provides a distinct perspective from

the other regression techniques of potentially significant value to a decision maker.

E. U.S. NAVY HELICOPTER PILOTS DATA

This example considers the results of an online survey of winged Naval heli-

copter pilots of the U.S. Navy; see Phillips (2011) for details. Her goal is to verify

if helicopter pilots back pain is a concern among the helicopter community and to

define this problem’s implications. Although this is an important and real issue in
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Figure 15. Example D: Regression lines for model c0 + cRLVXRLV.

the helicopter community, we do not use the superquantile regression technique de-

veloped in this dissertation to estimate helicopter pilots’ back pain frequency due to

the categorical nature of this random variable. Instead we utilize the available data

set to estimate the total flight hours Y for naval helicopter pilots. As explanatory

variables we have the number of years a helicopter pilot has flown for the U.S. Navy

(Xyears), and their body mass index (XBMI), available through a formula derived using

the available data on height and weight of helicopter pilots.

Since we only consider those pilots that answered questions in the “Demo-

graphics” and “Flight Hour Info” sections, see Appendix A in Phillips (2011), of the

648 pilots that completed the survey, we only use 633 observations. Figure 16 displays

these observations in a pairwise scatterplot matrix. As expected, one clearly depicts

the linear correlation between years an helicopter pilot has flown for the U.S. Navy
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and the estimated total number of flight hours.

We first consider a regression function of the form f(x) = c0 + cyearsxyears +

cBMIxBMI and vary the probability levels α. Rows 2-10 in Table 13 report the obtained

Model Regression α c0 cyears cBMI R̄2
α R̄2

α,Adj

f1

Least Squares NA 51.70 161.22 0.9176 0.7780 0.7773

Quantile

0.25 -48.71 146.67 0.3418 — —
0.50 -55.56 177.78 0.0000 — —
0.75 0.0000 200.00 0.0000 — —
0.99 1233.3 322.49 -46.565 — —

Superquantile

0.25 -47.03 200.00 0.000 0.6094 0.6081
0.50 2.1827 208.69 -0.1809 0.6205 0.6193
0.75 116.71 223.21 -2.6097 0.6147 0.6134
0.99 244.33 323.79 -75.903 0.4754 0.4738

f2

Least Squares NA 74.84 161.30 — 0.7780 0.7776

Quantile

0.25 -40.00 146.67 — — —
0.50 -55.56 177.78 — — —
0.75 0.0000 200.00 — — —
0.99 -93.75 343.75 — — —

Superquantile

0.25 -47.03 200.00 — 0.6094 0.6088
0.50 -1.781 208.57 — 0.6205 0.6199
0.75 49.721 223.13 — 0.6146 0.6140
0.99 247.55 350.00 — 0.4538 0.4529

Table 13. Example E: Regression vectors, R̄2
α, and R̄2

α,Adj for model f1(x) = c0 +
cyearsxyears + cBMIxBMI and f2(x) = c0 + cyearsxyears at varying probability levels α.

solution vectors for model f1, the corresponding coefficients of determination R̄2
α,

and adjusted coefficients of determination R̄2
α,Adj. The fits are reasonable but the

p-value for cBMI from the least squares regression suggests the possible benefit of

dropping XBMI as explanatory variable. With this in mind, we drop the explanatory

random variable XBMI from our new model. Before we move on to the next model, we

notice that the obtained 0.99-quantile regression solution vector is correct although

its intercept looks way larger compared to other approximate solution vectors.

Second we consider a single-variable model of the form f2(x) = c0 +cyearsxyears,
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Figure 16. Example E: U.S. Navy helicopter pilots data scatterplot matrix.
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and obtain the results presented in Rows 11-19 of the same Table 13. The adjusted

coefficients of determination R̄2
α,Adj slightly increase in the cases of least squares and

superquantile regressions techniques, where α ∈ {0.25, 0.50, 0.75}. Figure 17(a) shows

the corresponding regression lines for the linear model f2, at a fixed probability level

α = 0.50. It is interesting to notice that the quantile regression line for α = 0.50 has

a negative intercept, while the least squares and superquantile regression functions

intercept the y-axis at higher values. Another aspect we learn from Figure 17(a) is

the importance of the magnitude of errors in regression. This is evident when we

compare both quantile and superquantile regression lines. Superquantile regression

responds to the observations that have larger errors, emphasizing those observations

that we might consider outliers.

Both least squares and quantile regression functions cross each other at xyears =

7.91 years. The observation (xyears, y) = (2000, 4) shifts the least squares regression

line upwards for smaller values of xyears, while the large number of helicopter pilots

with 3 and 4 years flying for the U.S. Navy with low total flight hours shifts the

quantile regression model downwards.

In Figure 17(b), we see the least squares regression model and the superquan-

tile regression functions for probability levels α ∈ {0.25, 0.50, 0.75, 0.99, 0.999}. We

notice that the superquantile regression models for α = 0.99 and α = 0.999 have

higher slopes when compared to the remainder of superquantile regression lines. Even

the difference in slopes established by the small increase of 0.009 in α provides us the

conclusion that deciding which probability level to use in an analysis is a hard process.

Since obtaining these superquantile regression models is not too costly, we consider

important to include several choices of probability levels α in any analysis.

From this example we conclude that superquantile regression helps analysts

address important questions such as level and trends of the average 1% highest total

flight hours (in the case of α = 0.99, in Figure 17(b)), understand if deployment rules

should be reviewed, and if these cases should be analyzed before reassigning them for
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Figure 17. Example E: Superquantile regression applied to the U.S. Navy helicopter
pilots data.
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future deployments.

F. PORTUGUESE SUBMARINERS EFFORT INDEX

The next example is based on a data set provided by the Portuguese Navy

Submarine Squadron. We seek to estimate the random variable Y that represents

the effort index of the Portuguese submariners. This index was created as a decision

tool to support human resource management inside the Submarine Squadron. Once a

sailor becomes a submariner, his career depends mainly on the Submarine Squadron.

The Commanding Officer of the Submarine Squadron has the power of assigning a

submariner for a mission, if there is the need to embark an extra element or substitute

someone onboard. It is crucial to support such decisions with a tool that emphasizes

who is more “available” for the mission.

The idea behind this index is to build in the near future a prototype for

submariners careers which helps determine selection criteria for future Submarine

Squadron personnel recruitment and also understand who has been overemployed.

In the data set, we have 103 observations with five possible explanatory vari-

ables: years since a submariner has gained the insignia of the Portuguese submarine

service (Xdolphins), years a submariner has embarked on surface warships (Xsurf), years

a submariner has been ashore (Xashore), total submarine navigation hours (Xsub), and

submariners age (Xage).

Naturally one thinks that age is an important factor that needs to be taken

into consideration. The idea of older submariners having more experience due to

more training has not always been true, and that issue raised the question of how to

quantify training and expertise. Figure 18(a) shows that although age is important,

it does not directly translate the effort of a submariner. For example, a 39-year old

submariner can have an effort index as low as 5 or as high as 22. Such discrepancies

cause discomfort among fellow submariners.

Another factor that is also relevant for designing a prototype for submariners
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(a) Effort index versus submariners ages.
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(b) Effort index versus years submariners have the dolphins.

Figure 18. Example F: Portuguese submariners effort index against their ages and
years they have the submariners insignia.
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careers is the number of years a submariner has the insignia of the Portuguese subma-

rine service. Analogously to age, one thinks that the larger this number, the higher

the effort index. Figure 18(b) shows how the effort index behaves with the number of

years a submariner has the dolphins, and we realize there is an increasing variability

among these observations.

For now we consider higher effort indices to be more detrimental than small

indices for the completion of the Submarine Squadron mission, i.e., overemploying is

considered worse than underemploying a submariner.

One of the goals with this example is to show that superquantile regression

helps us better visualize what may cause the discrepancies in effort indices among

submariners.

We next observe the possible correlations between variables in the data set. In

Figure 19, we have the scatterplot matrix of the data set for some of the explanatory

random variables, Xdolphins, Xsurf , and Xashore, against the effort index Y . Here we

can observe a linear correlation between the number of years a submariner has the

dolphins and the effort index. Since the total submarine navigation hours Xhours is

a factor considered in the computation of the effort index, their correlation is very

high and we do not include this variable in the scatterplot or later in the analysis.

We explore several possible models and compare the obtained solution vectors and

coefficient of determination results for further analysis.

In Figure 20, we plot the submariners ages against the number of years a

submariner has the insignia of the Portuguese submarine service. A small detail

that we encounter here is the lack of observations for values of Xdolphins between 4

and 7 years. This lack of observations is due to fact that Portugal acquired the

Tridente-class submarines in 2010, and the few years prior were dedicated to training

the existing submariners to a completely new technology. This process required the

Portuguese Navy to delay the submariners course until after the reception of the new

assets.
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Figure 19. Example F: Portuguese submariners effort index scatterplot matrix.
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Figure 20. Example F: Submariners ages against the number of years they have the
submariners insignia.

We first start with a linear model of the form f1(x) = c0 + cixi, with i ∈

{dolphins, surf, ashore, age}, i.e., we only include one explanatory variable at a time.

We then consider a linear model f2cdolphinsxdolphins + cagexage. Table 14 presents the

obtained solution vectors and the corresponding coefficients of determination, for a

probability level α = 0.75. The years the submariners embark in surface warships

and the number of years they spend ashore between embarks are two explanatory

variables that we discard from this point on, because they both play a very negligible

role, as determined by R̄2
0.75, even though they might be important in conjunction

with other explanatory random variables. Rows 6, 11, and 16 of Table 14 report

the regression vectors for model f2. We realize that the coefficient of determination

improves in these cases.
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Regression c0 cdolphins csurf cashore cage R̄2
0.75

Least Squares

3.1365 0.8643 — — — 0.7452
11.9111 — -0.4448 — — 0.0182
8.3782 — — 0.7491 — 0.2314

-17.6369 — — — 0.7983 0.4845
8.1218 0.9918 — — -0.1711 0.7512

Quantile

2.8690 1.0878 — — — —
15.8063 — -0.6190 — — —
10.7798 — — 0.7945 — —
-19.2554 — — — 0.9084 —
11.7357 1.3037 — — -0.3065 —

Superquantile

2.9811 1.2172 — — — 0.5866
17.6450 — 0.3456 — — 0.0038
15.4621 — — 0.5666 — 0.0212
-27.0234 — — — 1.2048 0.2403
7.3697 1.3430 — — -0.1558 0.5939

Table 14. Example F: Regression vectors and R̄2
α for linear models f1 and f2, at a

fixed probability level α = 0.75.

In Figure 21, we plot the linear model f1(x) = c0 + cdolphinsxdolphins for least

squares, 0.60-quantile and 0.60-superquantile regressions. All three obtained regres-

sion functions have completely distinct slopes. The blue line representing the quantile

regression gives us the notion of where the 40% worst cases are, while the green line

representing the superquantile regression model provides us the average of these worst

indices.

As stated at the beginning of this example, the orientation of the problem is

such that higher effort indices are worse. However and as illustration we believe it is

very beneficial to look at the cases where the submariners effort is low and therefore we

flip the orientation of this problem for the next figure in order to highlight those cases

that should also be taken into consideration. This is a good example where using one

of both orientations in solving the problem is possible depending on where the major

concern lies. Figure 22 shows the least squares regression model and the 0.75-quantile

and 0.75-superquantile regression functions. We add the 0.25-quantile regression fit
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Figure 21. Example F: Regression lines for model f1(x) = c0 + cdolphinsxdolphins.

and the new 0.75-superquantile regression function, after flipping the orientation of

the problem and solving for the new superquantile regression problem, marked with an

asterisk in the legend, and displayed in Figure 22 by a dashed green line. This dashed

line has the same meaning as the full green line but for the lowest 25% presented effort

indices. We consider that taking care of both ends of the spectrum will expedite the

process of smoothing the submariners career, but this is not fully pursued here. We

finish using the linear model f1(x) = c0 + cdolphinsxdolphins by showing Figure 23,

where clearly the 0.25-superquantile regression model is completely different of the

0.75-superquantile* regression model.

Second, we consider a quadratic model of the form f3(x) = c0 + cagexage +

cage2x
2
age. Table 15 shows the obtained regression vectors and the corresponding co-
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Figure 22. Example F: Least squares, quantile and superquantile regression func-
tions for linear model f1. An asterisk indicates that the 0.75-superquantile regression
function was obtained after reversing the orientation of the original problem.

Regression c0 cage cage2 R̄2
0.75

Least Squares -87.1182 4.6498 -0.05251 0.5442
Quantile -97.2181 5.2652 -0.0600 —

Superquantile -126.4859 6.9812 -0.0827 0.3235

Table 15. Example F: Regression vectors and R̄2
α for quadratic model f3(x) = c0 +

cagexage + cage2x
2
age, with α = 0.75.
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Figure 23. Example F: Different α-superquantile regression functions for linear model
f1. An asterisk indicates that the 0.75-superquantile regression function was obtained
after reversing the orientation of the original problem.

efficients of determination, which are larger than those obtained using the linear

model. We plot these quadratic models in Figure 24(a), and notice that the 0.75-

superquantile regression function captures the effects of the higher effort indices and

forms an interesting curvature. To the contrary, the 0.75-quantile regression model

does not seem to be affected by such observations and it looks almost parallel to the

least squares regression model for a 40-year old submariner. With these comments

in mind, we need a different validation analysis tool that helps us understand which

observations, if any exist, should be carefully checked for their validity, or should pos-

sibly be seen as outliers. Before we finish this example and as seen in Section II.C, we

utilize the Cook’s distance concept first applied to the case of least squares regression,

then to the case of superquantile regression. Since there is more than one possible

110



●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

30 35 40 45

5
10

15
20

Submariners Age

E
ffo

rt
 In

de
x

0.75−Superquantile Regression
0.75−Quantile Regression
Least Squares Regression

(a) Effort index versus submariners ages.
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Figure 24. Example F: Quadratic regression models f3 at probability level α = 0.75.

111



cut-off value for such Cook’s distances, we resort to the commonly used formula 4/ν

in both cases, least squares and 0.75-superquantile regression, where we have ν = 103

observations in this example. Figure 25(a) shows the Cook’s distances for the least

squares quadratic model, while Figure 25(b) the Cook’s distances for the superquan-

tile regression technique. We clearly see that observations number 24, 40, 49, and 80,

emphasized by the red dots in Figure 24(b) and 25(a), are considered high leverage

observations for least squares regression. In the context of superquantile regression,

we see that observations number 1, 19, 24, 27, 28, 31, and 32, emphasized by the green

dots in Figure 24(b) and 25(b), are considered high leverage observations. Curiously,

in our example only observation 24 is coincidently considered high leverage for both

regression techniques; plotted in orange in Figure 24(b). Another interesting detail

consists on where the high leverage observations are located in this same plot. We

realize that these observations drive the superquantile regression fit downwards since

they influence the 0.75-quantile regression function, and consequently also the result-

ing 0.75-superquantile regression function as an average of all observations above the

quantile regression fit.

Further analysis should be done for this example but it goes beyond the scope

of this dissertation. However we conclude that superquantile regression is an impor-

tant analysis tool that when used wisely gives the decision maker powerful information

on the upper tail of the random variable of concern. With the Cook’s distance con-

cept applied to the superquantile regression, we also identify those observations in

the data set that influence the obtained fit and that should be checked for validity.

G. UNCERTAINTY QUANTIFICATION

The next example arises in uncertainty quantification of a rectangular cross

section of a short structural column, with depth d and width w, under uncertain yield

stress and uncertain loads; see Eldred et al. (2011). Assuming an elastic-perfectly

plastic material, a limit-state function that quantifies a relationship between loads
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(a) Cook’s distances for least squares regression.
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Figure 25. Example F: Cook’s distances for least squares and superquantile regression
fits using quadratic model f3(x) = c0 + cagexage + cage2x

2
age, at α = 0.75.
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and capacity is described by the random variable

Y = −1 +
4X1

wd2X3

+
X2

2

w2d2X2
3

, (IV.1)

where the bending moment load X1 and the axial load X2 are normally distributed

with mean 2,000 and standard deviation 400, and mean 500 and standard deviation

100, respectively, and the material’s yield stress X3, is lognormally distributed with

parameters 5 and 0.5, with X1, X2, and X3 independent. We observe that the second

term in (IV.1) is the ratio of moment load to the column’s moment capacity, and

the third term is the square of the ratio of the axial load to the axial capacity. The

constant −1 is introduced for the sake of a translation such that positive realizations

of Y represent “failure” and negative ones correspond to a situation where load effects

remain within the capacity of the column. (We note that the orientation of the limit-

state function is switched compared to that of Eldred et al. (2011) for consistency

with our focus on “losses” instead of “gains.”) We set the width w = 3, and the

depth d = 12.

Model α c0 102c1 104c2 104c3 R̄2
α

f1

0.999 -0.6797 0.0156 7.9000 -9.1100 0.154
0.99 -0.8084 0.0150 3.8000 -8.2700 0.190
0.9 -0.8579 0.0107 1.5900 -7.7000 0.260
0.75 -0.8705 0.0090 1.0800 -7.5900 0.301
LS -0.8827 0.0070 0.5921 -7.7180 0.571

f2

0.999 -1.0457 1.8640 0.0300 — 0.902
0.99 -1.0450 1.6182 0.0400 — 0.891
0.9 -1.0308 1.3393 0.0200 — 0.894
0.75 -1.0261 1.2595 0.0200 — 0.893
LS -1.0179 1.1315 0.0056 — 0.979

Table 16. Example G: Approximate regression vectors and coefficients of determina-
tion for superquantile regression with varying α and least squares (LS) regression.

We seek to quantify the “uncertainty” in Y by surrogate estimation. Of course,

in this case, this is hardly necessary; direct use of (IV.1) suffices. However, in practice,

an analytic expression for a limit-state function, as in (IV.1), is rarely available. One
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then proceeds with determining a regression function f : IR3 → IR, based on a sample

of input-output realizations, such that f(X), with X = (X1, X2, X3), approximates

Y in some sense. To mimic this situation, we consider a sample of size 50000 drawn

independently from X, the corresponding realizations of Y according to (IV.1), and

two forms of the regression function. The first model is linear and takes the form

f1(x) = c0 + c1x1 + c2x2 + c3x3

and the second one utilizes basis functions h1(x) = x1/x3 and h2(x) = (x2/x3)2 and

is of the form

f2(x) = c0 + c1x1/x3 + c2x
2
2/x

2
3.

In view of (IV.1), we expect f1 to be unable to capture interaction effects between

variables and its explanatory power may be limited. In contrast, f2 uses the correct

basis functions, but even then f2(X) may deviate from Y due to the finite sample size

used to determine the regression vector. Table 16 confirms this intuition by showing

approximate regression vectors for both models over a range of probability levels α

as well as for the least squares (LS) regression. The vectors are obtained in less than

15 seconds by solving P ν,µ
Num, with ν = 50000, µ = 1000, and Simpson’s rule. The last

column of Table 16 shows R̄2
α, which is low for f1 and high for f2 as expected.

In uncertainty quantification and elsewhere, surrogate estimates such as f1(X)

and f2(X) are important inputs to further analysis and simulation. Table 17 illus-

trates the quality of these surrogate estimates in this regard by showing various

statistics of f1(X) and f2(X) as compared to those of Y . Row 2, Columns 3-10 show

estimated mean, standard deviation, superquantiles at 0.75, 0.9, 0.99, 0.999, probabil-

ity of failure, and buffered probability of failure (see (II.5)) of Y , respectively, using a

sample size of 107 and standard estimators. Coefficients of variation for these estima-

tors are ranging, approximately, from 10−5 for the mean to 0.02 for the probability of

failure. Rows 3-6 of Table 17 show similar results, using the same sample, for f1(X),

with α = 0.999, 0.99, 0.9, and 0.75, respectively. We notice that as the probability
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level α increases, f1(X) becomes increasingly conservative. In fact, for α = 0.999,

f1(X) is conservative in all statistics. Superquantile regression with smaller proba-

bility level α fails to be conservative for some “upper-tail” statistics. Interestingly,

f1(X) based on α is conservative for all superquantiles up to and including q̄α in these

tests. These observations indicate that in surrogate estimation the probability level α

should be selected in accordance with the superquantile statistic of interest. We can

then expect to obtain conservative estimates even for relatively poor surrogates. Row

7 of Table 17 gives corresponding results for f1(X) under the least squares regression

fit. While this fit provides an accurate estimate of the mean (see Column 3), the

upper-tail behavior is represented in a nonconservative manner.

Rows 8-12 of Table 17 show comparable results to those above, but for the

f2(X) models. As also indicated in Table 16, f2(X) is a much better surrogate

of Y than f1(X) and essentially all quantities improve in accuracy. For example,

f2(X) based on superquantile regression overestimates the buffered failure probabil-

ity only moderately with α = 0.999, 0.99, and 0.9, and slightly underestimate with

α = 0.75; see the last column of Table 17. In contrast, least squares regression un-

derestimates the buffered failure probability substantially even for this supposedly

“accurate” model. Of course, least squares regression centers on conditional expecta-

tions and as basis for estimating tail behavior may hide potentially dangerous risks.
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H. SUPERQUANTILE TRACKING

To finish Chapter IV, we return to the first example in Section IV.A, and

consider a loss random variable

Y = X1 +X2ε,

where ε is a standard normal random variable and X = (X1, X2) is uniformly dis-

tributed on [−1, 1]× [0, 1], with ε,X1, and X2 independent. We consider a regression

function of the form f(x) = c0 + c1x1 + c2x2 and set α = 0.90.

We examine conditional values of Y given realizations of X = (X1, X2), i.e.,

superquantile tracking. For x = (x1, x2), Y (x) = Y |X = x is normally distributed

with mean x1 and variance x2
2. Consequently, it is straightforward to compute that

q̄0.9(Y (x)) = x1 + 1.7550x2. Table 2 shows vectors that only track q̄0.9(Y (·)) approx-

imately, as c0, c1, and c2 deviate from 0, 1, and 1.755, respectively. In fact, there is

in general no guarantee that every regression function f will satisfy f(x) = q̄α(Y (x))

for all x, even for large sample sizes. As indicated by Proposition II.5, however, a

superquantile of Y (x) can be estimated by approximating a degenerate distribution

of (X, Y ) at x.

X range: [−1, 1]× [0, 1] [0.45, 0.55]2 [0.495, 0.505]2

c0 + 0.5c1 + 0.5c2 (1.349, 1.575) (1.329, 1.475) (1.330, 1.473)
c0 (0.029, 0.123) (-2.414, 1.784) (-23.715, 18.329)
c1 (0.971, 1.075) (-0.229, 3.597) (-11.063, 25.656)
c2 (1.523, 1.975) (-1.686, 5.186) (-33.916, 35.701)

Table 18. Example H: Approximate 95% confidence intervals when tracking q̄0.9(Y (·))
near x = (0.5, 0.5) using shrinking sampling ranges for X. The correct value
q̄0.9(Y ((0.5, 0.5))) = 1.378.

Table 18 shows such “local” estimates of q̄0.9(Y (x)) near x = (0.5, 0.5). Specifi-

cally, using ν = 500 we compute c0, c1, and c2 by solving P ν
LP as above, withX sampled

uniformly from [−1, 1]×[0, 1]. We repeat these calculations 10 times with independent

samples and obtain the aggregated statistics of Column 2 of Table 18. The second row

gives an approximate 95% confidence interval for the mean value of c0 + 0.5c1 + 0.5c2

118



across the 10 meta-replications. The interval contains q̄0.9(Y ((0.5, 0.5))) = 1.3775,

but is somewhat wide. Proposition II.5 indicates that sampling from a smaller set

[0.45, 0.55]× [0.45, 0.55] will tend to improve the estimate of q̄0.9(Y ((0.5, 0.5))). Col-

umn 3 of Table 18 illustrates this effect, by showing results comparable to those of

Column 2 and Row 2, but for the smaller interval. As expected, the confidence in-

terval for c0 + 0.5c1 + 0.5c2 narrows around the correct value. The last column shows

similar results, but now for sampling of X uniformly on [0.495, 0.505]× [0.495, 0.505].

The estimate of q̄0.9(Y ((0.5, 0.5))) improves only marginally, with the residual uncer-

tainty being due to the inherent variability in the (relatively small) samples. The

narrow sampling interval causes the last estimate to be similar to that obtained by

the standard empirical estimate from 500 realizations of Y ((0.5, 0.5)), which yields

the confidence interval (1.312, 1.462).

While sampling on smaller sets gives better local estimates of q̄0.9(Y (x)), the

global picture deteriorates. The last three rows of Table 18 show corresponding

approximate 95% confidence intervals for c0, c1, and c2, respectively. While c0+c1x1+

c2x2 generated by the set [−1, 1] × [0, 1] provides a reasonably good global picture

of q̄0.9(Y (x)), the smaller sets lose that quality as seen from the wide confidence

intervals. In view of the above results, we see that an analyst that can choose “design

points,” i.e., points x at which to sample Y (x), should balance the need for accurate

local estimates with that of global estimates. In fact, even if the primary focus is

on estimating q̄α(Y (x)) for a given x, as we see in this example, it may be equally

effective to spread the samples of X near x instead of exactly at x, and then obtain

some global information about q̄α(Y (·)) too. Our methodology provides a flexible

framework for estimating q̄α(Y (x)) even if there is only a small number of realization

of Y (x), or even none, available. The estimates are based on realizations of Y (x′) for

x′ near x.

In the next chapter we discuss the conclusions taken from our research and

suggest possible future work.
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V. SUMMARY, CONCLUSIONS, AND

FUTURE WORK

A. SUMMARY AND CONCLUSIONS

In this dissertation, we develop a novel regression framework, superquantile

regression, that naturally extends least squares and quantile regressions to contexts

where the decision maker is risk averse and is simultaneously concerned about the

magnitude of the obtained regression errors. As opposed to squaring these errors or

by looking at their signs, this framework for superquantile regression weights larger

errors increasingly heavily in a way consistent with a coherent and averse risk mea-

sure, the superquantile risk measure. We use superquantiles directly in the regression

model and go beyond other generalized regression techniques that approximate condi-

tional superquantiles by various combinations of conditional quantiles, with the only

required assumption that the involved random variables have finite second moment.

We utilize the “Fundamental Risk Quadrangle” concept and the connections

established therein between distinct measures of a random variable whose orientation

is such that upper-tail realizations are unfortunate and low realizations are favorable.

We rely on the superquantile-based risk quadrangle and the corresponding relations

between measures of deviation, risk, and error applied to the superquantile as the

statistic to obtain superquantile regression functions as optimal solutions of an error

minimization problem.

Then we develop the fundamental theory for superquantile regression by defin-

ing its regression problem as an error minimization problem. We examine existence

and uniqueness of the obtained regression functions, and we establish a guaranteed

unique regression vector in the cases where the loss random variable and the chosen

basis functions are normally distributed with a positive definite variance-covariance

matrix. Next we analyze consistency and stability of the regression functions under

perturbations due to possible measurement errors and approximating empirical distri-
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butions generated by samples of the underlying data. We formulate a deviation-based

superquantile regression problem as an equivalent minimization problem of a corre-

sponding measure of deviation taken from the superquantile-based risk quadrangle.

This new minimization problem implies computational advantages since it reduces the

number of variables and includes a simpler objective function. We also provide rate

of convergence results under mild assumptions that allow us to use an approximate

superquantile regression problem, based on a sample of the true distribution.

Since any regression framework must be associated with means of assessing

the goodness of fit of a computed regression vector, we define three validation analy-

sis tools for quantile and superquantile regressions: the coefficient of determination,

the adjusted coefficient of determination, and Cook’s distance. We first analyze the

formulas for these three validation analysis tools when applied to least squares re-

gression, and translate them into measures of error and deviation in the sense of the

mean-based quadrangle. We conclude that these three definitions can be formulated

for any generalized regression consisting of minimizing an error random variable.

Concerning computational methods for solving superquantile regression prob-

lems, we develop two distinct classes: the primal methods where one solves the su-

perquantile regression problem by means of analytical and numerical integration tech-

niques, and the dual methods where one utilizes the dualization of risk as part of the

objective function of the new regression problem that we apply to discrete cases.

In terms of complexity, our results indicate that the dual methods outperform

the primal methods in most of the cases, especially for large sample sizes. We com-

pare computational methods by presenting their runtimes and realize that using dual

methods is a quite fast process and in fact, for reasonable sample sizes, is not much

slower than least squares regression. While the primal method with analytical inte-

gration retrieves the exact solutions, it takes too long to run and requires too much

memory for sample sizes larger than 1000 observations.

Our results show that superquantile regression is computationally tractable,

122



offers new insight about the upper-tail-behavior for quantities of interest, and provides

a complementary tool for risk-averse decision makers.

B. FUTURE WORK

Similarly to what is done for quantile regression, future work could extend

statistical inference and predictive analysis applied to superquantile regression. Also

one could further research model validation analysis tools, and address significance

testing for superquantile regression. Much research also remains to be done on su-

perquantile tracking. Furthermore, one could build on an R-package to implement

superquantile regression and the respective supporting documentation.
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